
Neoclassical Growth with 
Fixed Factor Proportions

I INTRODUCTION

We analyze in this paper a completely aggregated model of production in which 
output is produced by inputs of homogeneous labor and heterogeneous capital goods, and 
allocated either to consumption or to use as capital goods. Allocations are irreversible : 
capital goods can never be directly consumed. Fixed coefficients rule : any concrete unit 
of capital has a given output capacity and requires a given complement of labor. Techno­
logical progress continuously differentiates new capital goods from old. But we assume 
that the “ latest model ” in capital goods has no smaller capacity and no higher labor 
requirement than any older-model capital goods with the same reproduction cost. Thus 
each instant’s gross investment will take the form of the latest-model capital. There is no 
problem of the optimal “ depth ” of capital. The main effect of an increase in gross 
investment is to modernize the capital stock in use.

One normal consequence of technological progress will be a rising trend of the real 
wage rate. Since existing capital operates under fixed coefficients, there will eventually 
come a time in the life of every vintage of investment when the wage costs of using it to 
produce a unit of output will exceed one unit of output. At that instant the investment 
may be said to have become obsolete as a result of the competition of more modern capital ; 
it will be retired from production—permanently, unless the real wage should temporarily 
fall.

We have several motives for wishing to analyze so special a model.
1. Capital theory seems—perhaps inevitably—to consist of a catalog of special 

models, distinguished by the different ways time and durable commodities enter the process 
of production. Since this simple, but not trivial, model has not been studied as a growth 
model before, we think it a worthwhile addition to the catalog.1

2. The model contributes something more than mere completeness to the catalog. 
It isolates the effects of what has been called “ quickening ”—hastening the practical 
introduction of newly-discovered techniques into production—from those of “ deepening ” 
of capital. “ Widening ” can also be analytically excluded by considering the special case 
of a constant labor force.

3. The literature sometimes suggests, or seems to suggest, that what are called “ neo­
classical ” modes o f analysis—we emphasize that we do not refer to assumptions of Say’s 
Law—require for their validity or utility that capital and labor be directly and smoothly 
substitutable for one another. This paper provides a counterexample. Although there is 
no scope for substitution ex post or ex ante, we show that the basic neo-classical methods 
do function and give the expectable results. No use is made of any “ generalized stock of 
capital ” .

1 The model was formulated and studied in detail by Salter [2], from a point of view which is somewhat 
different from ours.
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4. What is true is that the basic neo-classical methods apply when and only when 
output is limited by the availability of resources, not by effective demand. Most of our 
argument is conducted under the assumption that full employment of labor is the bottle­
neck to production. This assumption may be regarded as appropriate to a planned economy, 
or to a decentralized economy with an effective fiscal policy. An important task of economic 
theory is to find some way of unifying the theory of production and the theory of effective 
demand. The model of this paper is, we believe, particularly suited for this purpose, 
precisely because it gives effect to the common casual-empirical belief that in the short run 
the scope for changing factor proportions is small. On the other hand, the model no 
doubt limits excessively the scope for changing factor proportions over long periods of 
time. Like all aggregate models, it must ignore the effects of inter-commodity shifts.

5. Finally, it is sometimes asserted that in modern industrial economies ex ante 
choice of techniques is in fact unimportant; that at any instant of time one technique— 
the latest one—effectively dominates all others for all thinkable configurations of factor 
prices. We do not know how nearly true this assertion is (particularly in macroeconomic 
terms). But the model of production studied in this paper is presumably the appropriate 
vehicle for studying the implications of the assertion.

II PHYSICAL RELATIONS

1. Technological assumptions
The model assumes fixed-coefficient technology with embodied technical progress. 

Once capital has been put into place, there is no possibility of substituting capital for 
labor or vice versa; the output-capital and output-labor coefficients are fixed for the life 
of the capital. Neither are there any effective possibilities of ex ante substitution between 
labor and capital. For a business investing in new capital, only one pair of these co­
efficients, the pair which will characterize this capital so long as it is operating, is available. 
(This is not strictly true, since an investing business could always use older technology 
characterized by different coefficients. But this is an empty qualification, because in the 
model an investor will never prefer older technology to new technology no matter what 
wage rate and interest rate he faces.) Technical progress consists of improvement in one 
or both of the output-input coefficients. But the improved coefficients apply only to new 
vintage capital, not to investments made in the past. Since the model has only one 
commodity, serving indifferently as capital good and consumer good, investment can be 
measured unambiguously in physical units equal to the opportunity cost of one unit of 
consumption.

Formally, let:
Y{t, v)dv be the rate of gross output (physical units per year) at time t, produced on 

capital of vintage v, i.e. capital installed during a period (v, v +  dv), where 
necessarily v ^  t.

7(v) the rate of gross investment (physical units per year) at time v.
I(v)dv the amount of capital (physical units) installed in the period (v, v +  dv).
N(t, v)dv the rate of employment of labor (men) at time t on capital of vintage v.
X(v) the technologically determined output per year per man producible on capital 

of vintage v.
fi(v) the technologically determined output per year producible with one unit of 

capital of vintage v.
Y(t) total gross output per year, summed over all vintages of capital, at time t.
N(t) total employment (men), summed over all vintages of capital, at time t.
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I f f )  total labor supply at time t.

w{t) the real wage rate (physical units per man-year).

p(/, v)dv the quasi-rent earned at time t on one unit of capital of vintage v (a pure 
number).

m(t) the age of the oldest capital in use at time t (years).

The assumptions about production outlined verbally above can be summarized in the 
following production function for output from capital of vintage v (< /)

(1) Y(t, v) =  Min {X(v)A(f, v), /*(v)/(v)}.

This formulation ignores physical depreciation and assumes that capital is perfectly 
durable. This assumption has the advantage of simplicity, and it permits the model to 
bring out clearly the economics of obsolescence. Capital wears forever, but it is not in 
general used forever—better, more modern, capital displaces it. At the same time, physical 
depreciation of simple types can be allowed without essentially altering the behavior of 
the economy described by the model. In Part VII below, two kinds of physical depreciation 
are mentioned: (1) exponential evaporation or decay; (2) “ one-hoss-shay ” collapse after 
a fixed lifetime at full strength. At that point we will also indicate how the model can be 
generalized to allow the productive capacity of a unit of capital to decline with age while 
the capital remains physically in existence with its original labor requirements.

In general, we shall be interested in situations where, for vintages v in use :

(2) Y(t, v) =  X(v)jV(/, v) =  K v)/(v).

Unless this condition is met, capital of vintage v is not being efficiently used. It makes 
no sense to overman capital, and in a continuous-time model it will not be under-manned 
either. In a discrete time model, it would be conceivable that some but not all of the capital 
invested during period v might be in use at a later time t. This possibility does not arise 
here because there is not a finite mass of capital of any instantaneous vintage. If any 
vintage v capital is in use, all of it is. Note that there is no specifically “ vintage v ” labor. 
Any labor available at time t will do. One unit of vintage v capital employs /x(v)/X(v) 
workers when it is in use.

2. Kinds o f technical progress

The coefficients X(v) and p(v) carry technical progress. We shall assume that each of 
these coefficients is a non-decreasing function of v. This guarantees that no earlier tech­
nology is ever preferred to the newest. The model does not explain the advance of technical 
knowledge ; it is autonomous, requires no productive resources, and cannot be accelerated 
or retarded. A more complete model would relate progress not just to the passage of time 
but to production experience (as is done, for instance, by Arrow (1]) and to the use of 
resources in research and development (see, e.g., Uzawa [4]).

Three special kinds of technical progress are depicted in Figures 1a , 1b and lc. 
Capital-labor isoquants are shown for a fixed rate of output under vintage v0 technology, 
and under technology of a later vintage Vj. The arrows show in each case the direction 
in which technical progress moves the isoquant.
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C apital
\{v)dv

Capital
I(v)dv

F igure 1a F igure 1b

Purely labor-augmenting technical 
progress, “ Harrod-neutral 
Capital-labor ratio increases

“ Hicks-neutral 
Capital-labor ratio constant

Capital
J(v)dv

F igure lc

Purely capital-augmenting 
technical progress. 

Capital-labor ratio falls
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The three special cases are:
(a) X'(v) > 0 , p (v) =  0.

(b)
V(v) p '(v)
X(v) p(v) >U‘

(c) X'(v) =  0, p '(v) >  0.

Purely labor-augmenting or “ Harrod-neu- 
trai ” progress.
X(v)

constant. “ Hicks-neutral ” progress. 

Purely capital-augmenting progress.

3. Aggregative Implications
At any time t, the total labor supply L(t) is assumed to be given exogenously. This is 

not necessarily equal to aggregate employment N(t). The past history of gross investment 
7(v) determines the capital available for use at time t. The maximum possible employment 
which this investment history permits is :

and this requires all (surviving) capital to be in use. The integral may diverge, in which 
case labor can never be in surplus. For simplicity we assume N*(t) finite. There are three 
important possible regimes :

(I) L(t) >  N*(t) = N{t). Labor surplus.

All capital is in use. Labor is unemployed because of a shortage of capital. Or, when 
L(t) =  N*(t), labor is just adequate to man all the capital.

(II) N(t) =  L(t) <  N*(t). Full employment.

Some capital is left unused because the labor supply is insufficient.

(III) N(t) <  U t)  <  N*(t). Keynesian unemployment.

Some labor, and an associated amount of capital, is unemployed because demand is in­
sufficient.

4. Allocation o f labor
What is the optimal allocation of labor over the available capital of various vintages ? 

Or, to put the same question somewhat differently, which vintages should be used and 
which left unused ? Let u be an unutilized vintage and v a utilized vintage. If an allocation 
is optimal, it should not be possible to increase total output by shifting a unit of labor from 
vintage v capital to vintage u capital. Such a shift would increase output by X(m) and 
diminish it by X(v). Hence an optimal allocation requires that :

(3) X(w) x(v) for any unutilized vintage u and utilized vintage v.

Provided X'(v) >  0, optimal allocation is very simple and obvious: X(u) <  X(v) if and 
only if u <  v. No vintage should be left unutilized if an older vintage is in use. A rational 
planner allocating a given total employment N(t) would first man the newest equipment, 
then the next newest, and so on until he runs out of labor (or out of equipment). This 
is also what the competitive market will do. As we shall see, except in the labor-surplus 
regime, the competitive real wage rate makes it unprofitable to operate the oldest equipment. 
Quasi-rents obtainable at time t vary inversely with the age of capital—highest for the most 
modern, zero for the “ cut-off ” age, and negative for economically obsolete vintages.
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5. The purely capital-augmenting case
If technical progress is purely capital-augmenting—X'(v) =  0, the third, (c), of the 

special cases listed above—the allocation of employment among competing vintages of 
capital is indeterminate. Technical progress lowers the real cost of a unit of productive 
capacity. But once the capacity is in being, the marginal and average variable cost of 
output is the same on every vintage. Therefore, this case is not very interesting. It reduces 
to these possibilities:

(a) In regime I, there is always ample labor to man the whole capital stock. When 
X(v) =  X, this implies :
(4) N(t) =  N*(t) = [  Y(t) =  l-  j* ji(y)I(v)dv.

Let s(t) be the ratio of gross saving to gross output at time t. Correspondingly, - tt is the
KO

marginal or incremental capital requirement per unit of output. We have, therefore, the 
familiar Harrod-Domar equation for the rate of growth of output and employment :

(5)
i m
m

no
Y(t) =  K ‘K  0-

If labor is truly in excess supply, its marginal product is zero and so is its competitive 
real wage, or its shadow price in a planned economy. Correspondingly, the rent on capital 
of vintage v is its average product: K v)- If L(t) is just equal to N (t), then the price of 
labor w(t) is indeterminate between zero and its average product X. Correspondingly, the 
quasi-rent p{t, v) on vintage v capital is indeterminate between K v) and zero:

(6) P(l. v) =  Mv) ( l  -  y )  ä  0.

(b) In the other two regimes, labor supply is not large enough to permit utilization 
of all vintages of capital. The marginal product of capital is zero, whatever its vintage. 
New capital has no advantage over old. If labor is fully employed, its real wage is X, its 
average product. This situation may, of course, lead to Keynesian difficulties : full employ­
ment incomes might generate saving but, since profits are zero, not corresponding invest­
ment. Then the result would be under-utilization of both capital and labor, with the 
efficiency-prices of factors again indeterminate.

6. Obsolescence and income distribution
So much for purely capital-augmenting technical progress. In all other cases new 

vintages will always be preferred to older vintages. We disregard the labor surplus regime 
as atypical for advanced economies. In cases of interest, then, the age of the oldest capital 
in use, m(t), is related to total employment by the equation

(7) N(t) =  T  ^  I(v)dv.

On the other hand, there is a relation between m(t) and aggregate output:
(8) YU) =  f  n(v)I(v)dv.

J
Employment of a unit of additional labor at time t would permit the use of capital 

just beyond the cutoff point m(t), adding to total output the average product of labor on 
capital of this vintage. The marginal product of labor, therefore, is X(t — m(t)). (This is
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dY{t)
the value of as may be ascertained by differentiating (7) and (8) with respect to

N(t).) The marginal product of capital of any vintage may also be found. An additional 
unit of capital of an active vintage v (v greater than t — m{t)) would permit added output

of i4 v). But it would require shifting 777 units of labor away from the oldest vintageA(y)

m(t)). An additional unit of capital of an idle
u( y)

capital, reducing output by X(/ 

vintage adds nothing to output.
Under competition, we can identify the marginal product of labor with the real wage 

and the marginal product of capital of any vintage with its quasi-rent:

(9)

( 10)

w(r) =  X(f — m(0), 
f

0

p(L v) =
X(f -  m(t))\  

X(v) /
V

if v <  t — m(t)

if v >  t — m(t).

Together wages and quasi-rents exhaust the output of active capital.
The history of a particular investment is this : Its average product remains constant. 

At the beginning it earns a positive rent, because it is superior to earlier vintages. But as 
still better capital comes into existence, wages rise and the rents on the investment decline. 
Finally, wages are bid up so high by the owners of modern equipment that the rent on the 
investment vanishes. It is obsolete and ceases to operate.

7. The growth o f income
The growth of income may be decomposed into a part attributable to the growth of 

the labor force and another part associated with new investment. Differentiating (7) and 
(8), we obtain:

N ’{t)

H O

_  M 0A 0 
x(/)

-  m(t))
x(r -  m(0) (
fi(t -  m{t))I{t -

-  m(t))(l -

m(0)(l -  m'(0)

( 11)

( 12)

X(f -  m(t))N'{t) =  fi(t) AO -  Hit -  -  m{t)){\ -  m \t))

n o  =  f f ’m t  -  mit)) +  /(om o  (1 -

=  N V M t)  +  /(0  p(t, 0
H O  =  M 0 m \ H O  . A O
Y(t) \  Y(t) )  N(t) +  l) Y{t) •

This decomposition is analogous to the more conventional one for models with substitution.
In regime II, full employment, causation may be interpreted in this manner: L(t) =  

N(t) -> m{t) -> F(0 and w(t). The first causal arrow stands for (7), the second for (8). 
In the Keynesian regime III, output is determined by effective demand. The causation 
then runs the other way : Y(t) -> w(/) and m(t) -> N(t) <  Iff) . Now the first arrow stands 
for (8), the second for (7). In this interpretation, one can easily allow for feedback effects 
of income distribution on effective demand. Equations (11) and (12) apply under either 
interpretation.

If aggregate demand falls, the model says that plants shut down in order of their age. 
Aside from the usual complications of aggregation, this is realistic enough. Its corollary,
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however, is that the average and marginal products of labor rise as labor is laid off from 
the oldest and least efficient plants. Cyclical statistics indicate the opposite, apparently 
because, in recessions believed to be temporary, employers continue to man, at least partially, 
facilities which they are not using (and/or because the right-hand side of (7) contains an 
“ overhead ” component independent of current output).

8. Exponential Growth Under Full Employment: Labor-augmenting progress
In what follows, both technical progress and labor force growth are assumed to be 

exponential :
(L{t) =  L0e»t 

(13) Mv) =  pae ^
U ( v ) =  V * ’

The fid i employment regime is analyzed first : the labor supply is fully used but is insufficient 
to man all physically surviving capital. Moreover, the simplest kind of technical progress 
is assumed—the purely labor-augmenting, “ Harrod-neutral ” variety, i.e., p(y) =  p0 for 
all v.

9. Balanced growth paths
Consider paths along which gross investment has been growing exponentially forever : 

I(t) =  I0e9t. From (7) and (13) we calculate:
L 0ent =  : - r o/" y , e^~X),(l -  £-<*-*■)«</>) for all t.

If g =  n +  7, this equation can be satisfied with m(t) constant. If g ^  n +  7, the equation 
can not be satisfied even with variable m(t) ; for g < n +  7, the left-hand side must even­
tually outstrip the right while g >  n +  7 implies that m(t) -> 0 which in turn implies that 
gross investment eventually exceeds gross output (see (18)). Therefore:

(i) g =  n +  7, the usual formula for the “ natural rate of growth ” under Harrod- 
neutral technical progress ; and

(ii) m(t) is a constant, say m, satisfying

g-nm')'L  = t é o (l
0 7o«

(14) m

For this formula to make sense, it is necessary that 70«L0<  /*„/„. The meaning of this 
restriction is easily seen after it is rewritten :

nL0ent < \ e Xt

In this form it says that the increment to the labor force must be smaller than the labor 
required to man the brand new capital : the gap is to be filled with the labor that had been 
operating the capital (of age m) now being retired. If the inequality is not satisfied, the 
length of life of capital will have to be extended indefinitely and, if N* is finite, labor will 
eventually become surplus. This puts a lower limit on /„ (cf. (vi) below).

(iii) p(r, /) is constant ;

(15) p(r, 0  =  /xq(1 -  e-Xm).
(iv) w(t) grows exponentially at rate 7 ;
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(16) w(/) =  ( X0e '■m)eu  ;

(v) Y(t) grows exponentially at rate g; from (8)

(17)

(vi) From (17) it follows that the gross saving ratio, s(t), defined as I(t)[Y(t), is a 
constant depending on m:

If the saving rate thus calculated exceeds one, it means that even with consumption reduced 
to zero the economy is incapable of producing the minimal equipment required to employ 
the whole labor force, and eventually a labor surplus situation must emerge (cf. (ii) above)

10. Alternative Saving Rates
According to (18) the path corresponding to a high saving ratio is characterized by 

low m, quick obsolescence, modern capital. In the same sense, a low saving ratio means 
a long economic life for capital. Eliminating 70 between (14) and (17) shows that a path 
with low m and high s has a high Y0, as in Figure 2.

Not all values of s and m are consistent with balanced growth of this kind, at the 
“ natural ” rate g =  X +  n. At one extreme, the lower limit on the saving ratio s is g/g.a. 
This is the value of s for which m must be infinity in (18). It corresponds, therefore, to a 
situation in which, according to (14), the rate of investment is just sufficient to employ 
increments to the labor force without transferring any workers from obsolescent capital. 
L(i) and Nit) are equal to N*(t) and all are growing at rate «. But because full employment 
requires that infinitely old capital be left in use, the competitive equilibrium real wage, 
according to (16), must be zero!

Suppose the saving ratio is still smaller, so that sp0 is less than g. If no capital ever 
becomes obsolete, the stock of capital will grow at the rate sfi0. But with the number of 
workers growing at rate n and the number of workers required per machine falling at rate 
X, the stock of capital must grow at rate g to provide enough places. If s^0< g, therefore, 
new investment is insufficient to employ the natural increase in the labor force, much less 
to require release of any labor from older capital. So long as any capital is unused, previ­
ously submarginal vintages will be brought into use. As labor goes to work on older and 
older vintages, the real wage falls. The limit, of course, is the labor surplus regime.

(18) ^(1  _  erm) 70’

Balanced Growth Paths

high s', low m, low r

F igure 2
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The highest conceivable saving ratio (in a closed economy) is 1, and the correspondingly 
shortest capital lifetime m is given by

PoO -  '

(This has a positive solution for m provided g <  g0 ; otherwise, as remarked above, the 
need for new capital surpasses total output.) But this path, which yields the highest output 
path in Figure 2, is obviously not the path of highest consumption.

11. The Golden Rule Path
There is indeed a “ golden rule ” path—the balanced growth path on which, given 

the development of the labor force L(t), consumption is higher at every point in time than 
on any other balanced growth path. Along this path, (1) the saving ratio is equal to the 
share of capital in gross product; and (2) the rate of interest or marginal efficiency of 
capital is equal to the growth rate. These are familiar neo-classical or neo-neo-classical 
propositions, and it is of interest that they apply for the fixed-coefficient technology of the 
model under discussion here.

To prove the first proposition, it is necessary to show how the share of capital a 
depends on the obsolescence period m. The wage bill N(t)w(t) is equal to N(0)enteXUm). 
Since Y(t) — Y(0)ein+XH, labor’s share is constant over time along any path with exponential 
investment and, therefore, constant m and constant s :

N(t)w(t) A'(0) y  Xm
(19) 1 * Y(t) 7(0)

From (14) and (17) this becomes:

(20)
_e 9m)

n( 1 — e~9m)

From (20) it follows that a is an increasing function of m—running from zero for 
m =  0, i.e., when all input is current labor input, to 1 for m =  oo, i.e., when labor is in 
surplus.

F igure 3
Balanced-Growth Paths 

Relations of Capital Share a and 
Saving Ratio s to Obsolescence Period m
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Similarly (18) shows that s, the saving ratio, is a decreasing function of m. Both these 
relationships are shown in Figure 3. At m*, s — a. That is:

g «(1 — e~9m*) — g(e~
( 21)  -  —v ' Ml — e~em*) n( 1 — e ^ m*)
We must show that this value of m* also maximizes C(0).

g-gm

C(0) =  (1 -  5)7(0) 

For given N(0), C(0) will be maximized if

1 — s X„hV(0)
s ' /a.0(1 — e~nm) '

1 — 5
5(1 — e~nm) is maximized,

i.e., if
^0(1 — e 0™) — g 

g(l — e-nm) is maximized with respect to m.

The condition for the maximum,
(22) g(l — e~nm)n0ge~sm =  (^(1 _  e- gm) _  g)gne~nm,

reduces to (21), the condition for « =  s. Since this equation determines a unique local 
extremum, which is a maximum, the first formulation of the golden rule theorem is proved. 
The second version of the theorem states that along the balanced growth path with maximum 
consumption the rate of interest is equal to the growth rate. That statement is also true 
in this model, but the proof is postponed until the interest rate or marginal efficiency of 
capital has been introduced more formally. Ill

Ill ASYMPTOTIC BEHAVIOR UNDER PURELY LABOR- 
AUGMENTING TECHNICAL PROGRESS WITH FULL 
EMPLOYMENT AT A CONSTANT SAVINGS RATIO

1. Preliminaries
Throughout the last few sections, we have been exploring the properties of full employ­

ment paths along which investment grows exponentially at the natural rate. We have 
observed in (14) and (18) that this restriction requires the economic lifetime of capital and 
the gross saving ratio to be constant, and fixes their values. Now we wish to postulate 
the saving behavior and then see if anything can be said about the path along which a full 
employment economy must travel.1 Our assumption will be the simplest one, i.e., that 
gross saving is a constant fraction of gross output. Other possible assumptions will be 
discussed later.

We adopt the exponential assumption (13) and for convenience we shall let L0 =  1, 
so that

L(t) =  ent for all t.

As for the technical progress functions, we assume that X0 =  /x0 =  1, so that 

n( v) =  1 and X(v) =  ekv for all v.
Finally, let s denote the (constant) savings ratio. These assumptions, which are merely 
choices of units, can be made without loss of generality.

Before our economy can proceed to evolve, it must be endowed with an initial capital 
profile. Let t =  0 be the point in time at which the economy begins to evolve. Then the

1 Uzawa [3] studied this problem in the framework of the no-obsolescence vintage model.
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initial capital profile is given by an arbitrary nonnegative real function, which we denote /, 
on the interval (—oo, 0). In other words, I(t) is predetermined and arbitrary for all t <  0. 
As a matter of convenience we shall assume that there exists a real number h* <  0 such 
that

7(v) =  0 for v h*,

I(v) >  0 for v >  h*,

where h* =  — oo is permissible. Vintages later than h* are all present in the initial capital 
profile in positive quantities. (We also assume that /  is a function which can be integrated.)

Instead of using the function I  for the initial capital profile, we shall use a trans­
formed version. The reason for introducing this transformation will become apparent 
shortly. For every t <  0, define

/(f)  =  -  I(t)e~(X+nit.

Apart from the multiplier /  is just the ratio of I  to an exponential trend, so specifying
/  is equivalent to specifying /. Since /(f) is intrinsically nonnegative, so is /(f).

Starting at time t =  0, the economy proceeds under its own power. Its motion is 
determined by the following equations, which are obvious versions of (7) and (8).
(a) Full employment o f labor

I e~XrI(v)dv = ent for all t >_ 0,
J  m

where h{t) is the vintage of the oldest capital in use at time t, so that h(t) +  m(t) =  t.

(b) Determination o f output

I I(v)dv — Y(t) for all t >  0.
J Ml)

(c) Equality o f gross saving and investment

I(t) =  sY(t) for all t ^  0.

These three equations may be collapsed into two. For every t 0, let fit)  be defined by

f ( t )  =  e - 'x+»>«T(0;
/( / )  is output per efficiency unit of labor. This definition is consistent with the one already 
made for t <  0, so we can proceed to write the basic equations which govern the motion 
of the economy as follows:

(7')

(80

j:
■J

-nU-x'.f(x)dx — 1 for t ïg 0,
Mi)
t

s I e~{X+n)U~xf(x)dx  =  f i t )  for l f  0. 
M0

It is sometimes more convenient to write these equations somewhat differently : 
fmU)

(7") s I e~nxf{ t — x)dx =  1 for t 2; 0,

’m(0
(8") *J. -<>■+») a:rf ( t  — x)dx — /( /)  for ( g 0 ,

where m(t) has its earlier meaning.
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Remark 1 : f i t )  >  0 for all t /  0.
Proof. It follows from equation (8') that if f ( t0) =  0 for the first time at some t0 2: 0, 

then either f it)  =  0 for all t t0 or h(t0) — t0. In either case, equation (7') cannot hold.

Remark 2 : The functions f  and h are both continuous on the interval (0, oo).
Proof For X 22 0, the integrand in (8') is no greater than that in (7'). Hence/(f) ^  1. 

Since /  is thus bounded and positive, the continuity of h follows from (7') and then the 
continuity of /fro m  (8').1

Remark 3 : The functions f  and h are, in fact, differentiable on (0, oo).

Proof. Notice first that if h is differentiable, then it follows from equation (8') that /  
is also differentiable. To see that h is differentiable, we write down equation (7') twice, 
once for time t and once for time t +  At, and then we subtract the latter from the former. 
This leads to

f A ( /  +  A() f t
enxf(x)dx —

J HO J t

t+st I
enxf(x)dx  =  -  en*(l — enAl).

Since / i s  continuous, we can use the mean value theorem and obtain, following 
by At,

h(t +  At) -  h(t) 
At ff(x ')  -  e«*"f(x") ptlt •] _enM

~At

division

where x' is between h(t) and h(t +  At) and x"  is between t and t +  At. 
we see that

lim
Al-*-0

h(t +  At) — h(t) 
At

Letting At -»■ 0,

must exist, since the other limits in the equation exist. Hence h is differentiable at t unless
lim

Ar->-0 f ix ')  =  0.

But lim f{x ')  =  f{h{t)), by continuity of /  and h. Now if h(t) >  h*, then f(h(t)) >  0. If 
hit) =  h* and h'(t) does not exist, then equation (7') cannot hold to the right of t, i.e., 
full employment ceases at t. This completes the proof.2

2. Balanced growth paths
At every point of time t, the values of the function /  on the interval (hit), t) determine 

the immediate future of/ .  The values of/  on the interval {h{0), 0) are the initial conditions 
of the system. Our task in this section is to look for something analogous to an equilibrium 
point, namely for a set of self-sustaining initial conditions. In other words, we are looking 
for an initial capital profile which leads the function m to be constant and the function /  
to be periodic:

m(t) =  m* (a constant) for all / 0,
f ( t )  =  f { t  — m*) for all t ^  0.

A solution of equations (7') and (8') which satisfies these two requirements is called an 
equilibrium solution. An equilibrium solution for which /  is in fact constant is called a 
balanced growth solution. The discussion in 11.10 of “ replacement echoes ” shows that 
if n ^  0 the only equilibrium solutions are actually balanced growth solutions, because

1 If we drop the assumption that the initial capital profile “ has no holes ” (i.e. the function /, once 
positive, remains positive) then h may cease to be continuous (although it is not difficult to trace its dis­
continuities) while / remains continuous throughout (0, oo).

2 If the assumption that the initial capital profile “ has no holes ” were to be dropped, one would 
still have the differentiability of /  and h in open intervals where h is continuous.
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the “ echoes ” in the function e~lX+nHI(t) cannot be strictly periodic. In any case, even if 
n — 0 (which permits f  to be strictly periodic) the saving ratio cannot be constant unless /  
is constant. In other words, the only equilibrium solutions are balanced growth solutions.

To find a balanced growth solution (if there is one) we must solve equations (7") and 
(8") under the assumption that/ and m are both constant. Setting/(f) =  /*  and m(t) — m* 
for all t, where /*  and m* are nonnegative real numbers, causes equations (7") and (8") 
to reduce to

and

I 'm *  e f *
sf* I e~nxdx =  —— (1— e~nm*) =  1 

s \ e ~ ^ xdx =  r f -  (1 _ c-U+»>-)
J  o  ̂+ « 1

respectively. These equations have a unique solution, namely

(23) w* - - A  +  « IOg
and

(24) J s(l — e~nm*)

provided that s +  n. If s =  X +  n, we have m* =  +  co and /*  =  n/s, which we shall 
admit as a solution, provided n >  0. If s >  A -f «, then m* is finite and /*  exceeds n/s. 
If s <  X +  n, full employment is in the long run impossible. This is another way of 
expressing the remarks made above in interpreting equation (14). Formally, (7") and 
(8") have no solution. To see this note that (8") implies for every

C mit) f  «> f
f( t)  =  s e~iX+nixf{ t  — x)dx f  s e-°-hn)xf ( t  — x)dx f  — — /

J o  J o  A +  n

where /  is the supremum of/  (finite by (7")). If -■ — <  1, then either/ =  0 (whence f i t )
_ S -

is identically zero) or, if / >  0, a t0 can be found for which f ( t 0) >  — —  / .  The first
A “j- f t

contingency contradicts (7"), the second contradicts the inequality just derived.
Note that in this section the capital-output ratio =  1, so that s is Harrod’s warranted 

rate of growth. Comparisons between s and A +  n are comparisons between the war­
ranted and natural rates. 3

3. A Basic Differential Equation
We return now to the general case where f{ i)  and m(t) need not be constant. Since 

we know that both /  and m are differentiable, we may differentiate equations (7") and 
(8") and obtain, after some calculation, the differential equation:

f i t )  =  (j  -  A -  ri)fit) -  isfit) -  n)e~^it)
for all t >  0. This is actually the differential equation which we have already seen in 
different guise, (11), expressing the rate of change of output in terms of marginal produc­
tivities and factor rewards. It can be usefully transformed with the help of (23) and (24), 
which imply that

s — A — n — s

We now have
f i t )  =  s ^ l  — j j^ je ~ Xm*f(t) — is f t )  — ri)e~Xmit)
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But we have observed that f t )  >  0 for all t, so it is permissible to divide the second term 
by f t )  and thus obtain
(25) f \ t ) = - s f t ) ^ e ~ Xm* { \ - J f i j  - e - Xnî(̂ l  - ^ j )  j

for all t >  0.

This differential equation says something about the derivative of /  in terms of the 
deviation of the system from balanced growth. Specifically,

if m(t) 2: m* and f t )  sS /*  then f i t )  f  0, and 
if m{t) m* and f( t)  2 :/*  then f i t )  <:'  0.

4. Asymptotic Behavior in the Case s f  \  f  n
Since the initial capital profile is, to a large extent, arbitrary, we cannot hope to 

characterize the solution of equations (7') and (8') fully. However, we can hope that as t 
becomes very large, the influence of the initial capital profile wanes, so that assertions can 
be made about the behavior of the economy for large t. This hope turns out to be realized. 
This section and the next are devoted to asymptotic analysis.

It has already been shown that if s <  X +  n, continued full employment is not possible. 
The economy does not save enough to provide for the growing effective labor force. So 
we turn to the other cases, and first to the case s =  X -f- n.

For this case, we have the following differential equation:
f \ t )  =  {n — sf{t))e~kmW 

which implies the following two statements:
f \ t )  §  0 according as f t )  0  ”

and
f i t )  S  ” according as f o )  0  ” .

In any case, /  is monotone and bounded, and must therefore converge, 
its limit ö. We now define a function F by

F f)  =  s e - n ) ( t - xf(x)d.X for t à  0.

We shall denote

F(0) is finite if the stock of capital at time zero is finite. We assume this to be the case. 
Differentiating F, one obtains

n o  =  m  -  (x +  n)Fit) =  (X +  « M O  -  F(0] g  0.
Thus F is a non-increasing function. Since it is nonnegative, and therefore bounded below, 
it must converge. Now/ is known to converge and therefore

lim [ f t )  -  Ff)]
/—>00

exists. In other words, lim F '(0  exists, and since F  converges, this limit must be equal 
to 0. T hus,/and  F  converge to the same limit. Comparison of the definition of F  with 
(8') now implies that hit)-* — oo and, therefore,

lim m[t) =  oo.
t ->  00

For an arbitrary e >  0, let T  be defined by
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It now follows from equation (7") and the fact that /  ^  1 that
ÇT

1 — s 5Ï s ! e~nxf ( t  — x)dx â  I,

where the first inequality holds for all t, and the second inequality holds for large t (since 
m(t) ->■ oo). Letting t -> oo, we obtain

1 -  e ^  -  [1 - e ~ nT] ä  1, n

1 - e S S â  l.
ftBut e is arbitrary, so we must have 8 = -.
s

If n =  0, the proof must be modified slightly: in that case, for any arbitrary T,
Ç T

s I f i t  — x)dx g  l

provided t is sufficiently large. (This is true because m(t) tends to oo.) Letting t -> oo, 
we obtain

s8 T g  1.

But T  is arbitrary, so it must be true that S =  0. Thus, when s — X +  «, the functions /  
and n tend to the balanced growth values derived in (23) and (24).

5. Convergence to Balanced Growth in the Case s >  X +  n
This section is devoted in its entirety to a proof of the following theorem:
I f  s >  X +  n, then lim f ( l)  =  f *  and lim m(t) — m*.

t~* OD t—> GO

The proof is rather elaborate, but the techniques used may be of some interest. We 
shall develop the theorem in a series of lemmas.

Lemma 1. There exists a t0 such that 

f i t )  ä  ~s for t ^  t0.

Proof. It follows from the differential equation (25) that if f ( t )  ä  -  then f '( t )  >  0,
n n $

so that if there exists a t0 such that f ( t 0) ^  -  , then/( /)  ^  -  for all t ä  tn. It remains to be

shown, therefore, that f( t)  < -  for all t 2 0  is an impossibility. Assume that in fact
s

f{t) <  j  for all t 0. Then

f i t )  >  0 for all t,
h'it) < 0 for all t

where the second inequality follows from differentiation of equation (7'). Thus, 
lim /(0

exists. Call it S. By assumption,

f i t )  < S ä  j for all t.
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Substituting 8 in equation (7") we obtain

. g-nmtt)^ <  J _ £>-

95

1 < —(1 n
whence

- l im i t) < o ,

an impossibility. This completes the proof.

Lemma 2. I f  s >  X +  n, then lim hit) =  oo.
t~± 00

Proof. Differentiating equation (7') with respect to t leads to 
Se-nmuf(h(t))h'(t) =  sfit) -  n.

If f ( t )  ä  - , then h'it) 2; 0. By Lemma 1, there exists a t0 such that ü t)  2ì  - for / Sì
i  j

so we have A'(0 =  0 for t Si ta. Therefore,

or
lim hit) — oo

t-+oo

lim hit) =  K <  oo.

Assume the latter.1 Multiply the first equation in the proof by e"‘ and observe that 
t — mit) = hit). Now integrate over t from 0 to oo; if hit) has a limit the integral on

r°°
the left is finite, so I en‘isfit) — n)dt converges. This is not possible if / ' i s  bounded

J o
/ 'away from zero. But (25) tells us (since m/)-»oo) that j  ->(<5 — X—n)>0, and thus,

by Lemma 1 , / '  is bounded away from zero if n> 0. (A similar argument holds if n =  0.) 
When n = 0, the above argument shows that /(/)->0 from above, so that / '(? )< 0  for 
indefinitely large t. But h{t)^K  implies w(t)->oo, in which case (25) implies / '(? )> 0  
for all sufficiently large t, a contradiction.

What Lemma 2 tells us is that if s >  X +  n then every piece of capital is eventually 
discarded, never to be brought again into use.

Let t0 be the point beyond which the function h is increasing. Such a point exists by 
Lemma 1. Since, by Lemma 2, hit) -> oo as t -> oo, we can divide the interval [?0, oo) 
as follows: Let a sequence {tn} be defined by

hitn+i) — tn 0, 1, . . .
Thus, tn+i is the time at which capital of vintage tn becomes obsolete.

We shall now study the asymptotic behavior of the functions /  and m by looking at 
successive intervals of the form [t*, ?*+j).

Lemma 3. lim sup f i t )  5S/*.
*-►00

Proof. Suppose that we have been able to find a real number an-i such that for all
t sä tn-1,

f i t )  ä  On-x-

This means that if we take any t ä  tn, we have

f i t  — x) SS an-x for 0 g  x  5S mit).

Consider an arbitrary t ^ t n and fix it. We shall attempt to construct a real number an 

1 We acknowledge a useful suggestion from Kenneth Arrow at this point.
o
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such that an < an- x and f ( t )  g  an. For convenience, we shall refer to f ( t  — x)e~nx as 
?(*)•

Problem.
conditions

Among all real functions 9, defined on [0, m(t)\, and satisfying the two

0 ä  tp(x) ^  an-xe~nx,
r mit)

J 0 <p(x)dx =  1,

find a function tp* which maximizes the quantity 
f  mit)

s I e~Xx<?(x)dx.
J  »

The solution of this maximization is given by the function 9 which is as concentrated as 
possible near zero. In other words,

9*(x) =  an-xe-™ 
=  0

where T  is determined from

for 0 ^  * <  T  
for T  sï x  ^  m(t)

which reduces to

T r
s I an-\e~nxdx =  1

T
SQn—\I

Note that the inequality T  ä  m(t) is assured because T  is the smallest value which m(t) 
could take on in equation (7'), with f ( t  — x) satisfying the constraints. We may now 
write

maximum =  s I e~Xx̂ *(x)dx

f  T
— san-i e ^ +n)xdx

Using the expression for T, we have
. san- 1 , ,

maximum =  7—;—  î 1 — IX +  n
n \ n ^

Let us call this last quantity an

san~1 f
ûfl -- <1X +  n i_

S C lll- l!  J

"K n

SQn—1
Now an is the largest value whichf{ t)  could take on, withf ( t  — x) satisfying the constraints 
for all x. In other words,

f i t )  g  On.
It remains to be shown that an <  an-1, which is equivalent to
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But an-1 >  /* , or else there is nothing to prove. The left-hand side of the last inequality 
is precisely equal to 1 when an- x =  /* , so it is clearly less than 1 when an~1 >  /* . Thus, 
we have produced a new upper bound for f  namely an, which is good for all t tn. In 
the same fashion, we can produce still newer upper bounds, with the result that we shall 
have a sequence {a*} such that

f i t )  g  a* for all t ^  t*.
To complete the argument, we must find an an such that f i t )  S  a0 for t 2; t0. But a brief 
look at equations (7') and (8') will reveal that o0 =  1 will do nicely. Finally, it remains 
to be verified that the sequence {<%} converges to /* . This follows immediately, from the 
definition of /* , upon solving the equation for an under the condition an =  an- x. Thus, 
the proof is complete.

Lemma 4. lim inf f i t )  f i f * .
/->00

Proof The proof is similar to that of Lemma 3, with one added complication. 
Suppose that we have found a real number cn-i such that

f i t )  ^  Cn-1  for t s  tn-1.
Then, let t be an arbitrary number satisfying t f  tn, and let mit) be denoted m for short. 
Note that m is restricted by

which reduces to

m
s  I C n - ìP ~ n x d x  f  1

m  < 1 - — )■SCn-iJ
We know that g  f i t  — x) <  1 for all x  in [0, tn]. Let us refer to e~nxf i t  — x) as o(x) 
and consider the following problem : Among all functions 9 on [0, m], which satisfy

cn-fi-™  g  tpix) e~nx 

s I 9ix)dx =  1,
P m

find the function 9* which minimizes the quantity

s
m

e~Xxyix)dx.
0

for all x

The solution is given by
9*(x) =  Cn-1e~nx for 0 -< x <  T

=  e~nx for T  ^  x  ^  m

where T  is determined from

s J* cn-^e~nxdx+ s  J* e~nxdx 1,

which can be written
5 {cn- x +  (1 -  cn- 1)e-nT -  e-™} =  1. 
n

We note for later reference that
d T  _  e~n{m- T) 
dm 1 — cn-i
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Now let the minimum of the problem be denoted / ( f )  :
Ç m

fi{t) =  s e~Xx<? *(x)dx

+  (1 — cn~l)e-u+n)T —

We know that / ( f ) f_fi(t). But fi(t) depends on the unknown m, which is awkward. In 
order to get rid of this dependence upon m, let us evaluate

dm
dm X -{- n -(x + «XI * d T \Cn-i)e~l>+n>T -7— +  (X +  n)e~u+n)m, dm J

se~ e~XT} ^  0

since T  ^  m. Hence, if we let m become as large as it can be, we shall still have a lower 
bound on /(f). But the largest m can get is given by

1m = ---- log I 1
n SCn-

So, our new lower bound is obtained by setting m equal to this quantity in the definition 
of whereupon T  becomes equal to m. Doing this, one obtains a new lower bound, 
to be denoted cn, where

Cn —
SCn—1 1

■ÏCb- i

From here on, the proof proceeds as in Lemma 3. We can choose c0 =  The sequence 

of lower bounds, {cn}, obtained in the manner described, is increasing and it converges to/* . 

Lemmas 3 and 4 together constitute the following theorem:

The function f  converges and lim /(f) =  /* .
f-*oo

As an immediate corollary one now obtains that
The function m converges and lim m(t) =  m*.

t—>00 IV

IV COMPETITIVE VALUE RELATIONS

1. Wages, quasi-rents, and marginal products
The impossibility of direct substitution between labor and capital goods in this model 

means that there is no “ intensive margin ” . But there is an “ extensive margin ” at which, 
under competition, price relationships are determined. The elementary calculations have 
been made in section II, 6-7, and we recapitulate them here.

Capital goods of age m{t) are on the verge of obsolescence; they are “ no-rent” 
capital. If they earned a positive rent their owners would not be about to withdraw them 
from production under tranquil competitive conditions. Since wages are the only prime 
cost in this model, the real wage must equal the average product of labor on no-rent capital. 
This yields, as before,

(9) w(f) =  X(f — m(f)).

Younger capital goods are intra-marginal, and earn a differential quasi-rent equal to the 
difference between output and labor costs ; older ones could not cover prime costs if they
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were operated. Thus, with p(t, v) representing the real quasi-rent earned at time t by capital 
goods of vintage v,
(10) p(t, v) — 0 v ^  t — m{t)

=  Kv) _  X(? ~ ”i(r)))  v ^  / -  m{t).

In II, 6-7 it is shown that the competitive real wage and quasi-rent play the role of social 
marginal product of labor and of capital goods of vintage v: w{t) is the increase in aggre­
gate output permitted by one extra unit of employment, and p(t, v) is the increase in 
aggregate output permitted by the availability of one extra unit of vintage v capital.

2. Capital values
Under conditions near to steady growth, the economic lifetime of capital will not 

change very much and, therefore, p(f, v) will fall through time for each fixed v. (In the 
short run a sharp increase in output and employment may require a sudden increase in 
m{t) and bring about a temporary rise in the quasi-rents on existing capital. Even previ­
ously retired capital will be activated.) If m{t) does not fluctuate much, it is reasonable to 
suppose that the market can foresee with fair accuracy the pattern of quasi-rents a unit of 
capital can be expected to earn. The market value of any existing unit of capital will be 
the present value of the expected quasi-rents, discounted at the market rate of interest. 
Let P(t, v) be the price at time t of a unit of capital of vintage v, and let r(t) be the rate 
of interest at time t. Then

(26) Pit, v) j; P(«, v)e

r{z)dz

du =  /a.(v)
-  \ Ur(z)dz

Ku -  rnium e J ' dU' 
X(v) J

In this expression t =  t(v) is the root of the equation p(x, v) =  0; that is, it is the instant 
at which capital of vintage v will be retired.1 If m is constant, then of course t =  v +  m, 
and in any case t  =  v +  m(r).

For existing capital (26) is all there is to be said. When v — t, (26) gives P(t, t), the 
market price of a new machine at the moment of its construction. In tranquil competitive 
equilibrium, P(t, t) must also equal the cost of production of a new machine of vintage t. 
(P(t, t) can fall short of the cost of production if gross investment is zero, but we shall 
ignore that possibility.) Since this is a one-sector model we can, as mentioned in II, 1, 
measure capital goods in units identical with the unit of output. Thus P(t, t) =  1, and 
we have for every t

-  j  * r(z)dz

(27) 1 =  p(w, t)e d u 2

or

(27') ?(x + t, t)e

r i + x  
j  ̂r(z)dz

dx.

From (26) we can extract the well-known equilibrium condition

(28) p(L v) +  =  r(t)P{t, v).
ot

1 We assume for simplicity that it is correctly foreseen that capital, once retired, will never be called 
back into production by a “ cyclical ” increase in output and employment.

2 This can be regarded as an integral equation for the unknown interest rate as a function of time. 
The substitution

R(u) =  exp(— j" r(z)ih) throws (27) into the more familiar fojrn 
RU) = p(«, t)R{u)du. Similarly for (27'). ?
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The value of the stock of capital is

(29) K{t) -  I ' P(t, v)/(v)rfv.
J  t— m(t)

(Here we use again the assumption that the earnings of any particular investment fall 
eventually to zero and do not revive.) Now, by total differentiation with respect to t and 
use of (28) we find

(30) 7(0 -  K'(t) =  f  ' p(t, v)/(v)dv -  r{t)K{t).
J I—m(t)

K \t)  can be identified as net investment and r(t)K(t) as net profits. Thus the difference 
between gross investment and net investment is the same as the difference between gross 
quasi-rents and net profits. Both can be identified as “ true depreciation since we have 
ignored physical depreciation, only “ obsolescence ” remains. We can let Z(t) stand for 
net output and C(t) for consumption and write the accounting identities

no = ao + i(t) = mm) + f ' ?u- mm,
J

Z(t) =  c(0 +  K \t)  =  mm) +  r{t)K{t).

Equipped with these definitions and relations we can experiment with hypotheses that 
make net saving depend in one way or another on net income or net profits. But not 
much can be accomplished at this level of generality, so we turn to our standard special 
case. 3

3. Harrod-neutrality and balanced growth: the interest rate
Under the assumptions of section II, 9 technical progress is purely labor-augmenting 

and gross investment grows exponentially. Along such a path, as we saw, m(t) is constant. 
From (10) and (13)

P(t, v) =  0 if v ^  t — m,

(31) =  /i0(l — eX{t~v- m)) ; if v ^  t — m.

(27) becomes 

(32) _g Mu-t-rn i;r{z)dz

du.

Solution of this integral equation gives the equilibrium interest-rate as a function of time 
on a balanced-growth path. Experience with Harrod-neutrality and balanced growth in 
other models suggests that the interest rate will be constant. Since the interest rate is 
required to discount to unity the stream of quasi-rents expected from any newly-built 
item of capital, and since (31) shows that the current quasi-rent depends only on the age 
(t — v) of a unit of capital, it is indeed hard to see how any non-constant interest rate can 
do the trick. In fact, none can.

Substitution of r(z) == r in (32) and integration yields

(33) 1 = ^ 5 (1  — e~rm) ----- (e~Xm
r r — k e~rm)

=  m .
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It is easily seen that F{—oo) =  oo and F(oo) =  0; since F(r) is continuous, (33) has at 
least one root. Since F \r) <  0 (best seen directly from (32)) there is exactly one root. 
(That root may be negative; but not if the undiscounted sum of quasi-rents exceeds unity.) 
Thus if technical progress is Harrod-neutral there is one and only one constant interest 
rate compatible with competitive equilibrium along a path of steady growth.

It is more complicated to prove that the interest rate must be constant. In the form 
(27') the basic integral equation can be written

i;+ x
r(z)dz

dx f; g(x)e

r i + x
- } t r̂ dzdx

where g(x) >  0 for x  < m and g(m) =  0. The substitution R(—t) =  e 
the equation into

(27") g(x)R(t — x)dx.

s:r{z)dz
transforms

R(t) is, from its definition, intrinsically positive. We will show that the only positive 
solution of (27") valid for all t is R(t) =  ert, where r satisfies (33). Constancy of the interest 
rate follows.

We observe first that it is only necessary to settle the case g{x)dx =  1 (i.e. the 
case in which the constant interest rate is zero). If g{x)dx fi- 1, there is a unique constant 
h such that J” e^hxg(x)dx =  1 ; and it is easily checked that R*(t) =  R(t)e ht satisfies 
R*(t) =  R*(t — x)g*(x)dx with g*{x) — e~hxg(x). We will show that if J” g(x)dx =  1, 
the only positive solutions of (27") are constant, whence h is the constant rate of interest, 
as it should be.

We begin by showing that any bounded solution of (27") is constant. Let R(t) be 
a bounded solution. Then for any fixed z, D(t\ z) = R(t) — R(t — z) is also a uniformly 
bounded solution of (27"). Let M  = sup, D(t ; z). One can find a sequence tk such that 
D(tk; z) converges to M. Now define the sequence of functions Dk(t; z) =  D(t+tk; z); 
the Dk are an equicontinuous family of solutions to (27"). There is a subsequence con­
verging uniformly in any bounded interval to a limit solution D*(f, z) which is continuous 
and bounded above by M. Moreover,

D*(0; z) = lim D(tk\ z) = M  =  j* D*(— x; z)g(x)dx.

Since g(x) > 0, D*(t; z) — M  for all t between 0 and —m. Working backward one finds 
D*(t; z) =  M  for all t g  0. Therefore there is a k  such that Dk(t; z) =  D(t + tk; z)>M /2 
for t in any long but finite interval to the left of the origin, so D{t\ z )> M!2 for t in any 
long but finite interval to the left of tk. Therefore R(t) — R(t — z) > M/2 in the same interval. 
If M >0, R(t) can be made to exceed any preassigned bound by taking the interval long 
enough. If M  ^  0, let M ' =  inftD(t; z) g  0. A similar argument then shows that 
R(t) — R(t — z)<M 'j2  or R(t — z)> R(t) — M ’j2 in a similarly long interval, and if M ’<0 
R(t) can be made to exceed any preassigned bound by making the interval long enough and 
going far enough back. Hence M  = M ’ = 0 and R(t) = R{t—z) for any z, so R(t) is 
constant.1

1 This lemma has a checkered history. We began by depending on a more or less heuristic argument 
resting on the expansion of J?(r ) in an infinite sum of fundamental solutions of (27"). Not knowing how to 
make that rigorous, we constructed a direct “ proof ” . We are indebted to Kenneth Arrow for catching an 
error that vitiated the argument. He also gave us a reference to S. Karlin, “ On the Renewal Equation ” , 
Pacific Journal o f Mathematics, 5 (1955), lemma 4 on page 242, where the lemma is proved using deep analytical 
arguments. It seemed to us that more elementary methods must suffice for this proposition ; it is easy in 
discrete time, for example. The proof given in the text is intricate but elementary.
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The rest of the argument we owe to Professor Frank Stewart of Brown University. 

Define S(x) =  R(t)dt. From (27")

Let

j* x  I’ m r m  p

5(jf) =  R(t — s)g(s)dsdt =  R(t — s)g{s)dtds
J 0 J 0 J o i  0

r  m m
=  S(x—s)g(s)ds — S( —s)g(s)ds.

f  mJ o S(~s)g(s)ds
c ~

j:sg{s)ds

so c <  0 if R(t) >  0, and define T(x) =  S(x) +  cx. It is easily verified that T(t) satisfies 
(27"). Moreover T'(x) =  S'(x) +  c =  R(x) -j- c Ss c, so T(t) is a solution of (27") whose 
derivative is bounded below. In turn this entails the boundedness of T(t). Let 
M„ =  max R(t) and m„ =  min R(t) on the interval (n— l)m g  t '£ nm. If T  were 
unbounded M n—m„ would become arbitrarily large as «—> — co. One could then find 
an n for which M n — + 2mc. T(t) thus falls by more than —2me in an interval
no larger than 2m; by the mean value theorem T'(t)<c  at some intermediate point, 
a contradiction. It follows that T(t) is a bounded solution of (27"). It is therefore 
constant. Thus T'(t) =  R(t) +  c =  0 and R(t) =  —c for every t.

We have established that, with exponential, purely labor-augmenting technical pro­
gress, the only competitive equilibrium interest rate compatible with a permanent path of 
balanced growth is a constant interest rate, namely the unique real root of (33). Since 
the instantaneous interest rate is constant, the yield curve or term structure of interest 
rates is flat.

According to (33) r depends on /x0, X and m; through (18) r depends also on the 
other parameters, n and the gross saving ratio s. Holding /j0 and A constant, one can
calculate that —  > 0 ; if one compares two steady-growth paths with the same fi0 and A 

8m
but with different m, the path with longer lifetime for capital will be the one with higher 
interest rate. This sounds “ un-Austrian indeed the mechanism is very different from 
the economics of roundaboutness. From (18), a higher m is associated with a lower 5; 
with lower s, full employment requires the break-even margin to be pushed back to older 
machines. Thus a lower saving rate implies a higher m, which implies a higher rate of 
interest. This result is entirely conventional. Similarly (18) shows that, with given s

—  >0. Since g =  n+X, a steady-growth path with higher n will have higher m and
h
higher r; other things equal, faster growth in the labor force favors a higher rate of profit. 
(Remember that full employment, or at least a constant unemployment rate, is simply 
assumed.)

The relation between r and X, for given s, is more complicated because X appears 
directly in (32) or (33). Nevertheless, it can be shown from (32) and (18) that — >  0.

In this model faster Harrod-neutral technical progress with unchanged saving ratio always
dm

implies a higher rate of interest. The key to this result is that, from (18), — =
UÀ

g X W o - g
— m; and, again from (18), sg0 — g =

1
g___
. g -g m ~ g  =

g
e gm  _  J <

1_
m

Thus
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—  >  0; with given s, a faster rate of technical progress actually lengthens the economic
CA
lifetime of capital. The greater initial productivity advantage of new capital must outweigh 
the more rapid rate of improvement of capital still to come.

By letting r -> 0 in (33), we find the m corresponding to a zero rate of interest. This 
m1 satisfies

X =  n0{~km1 — 1 —
Since the right-hand side increases monotonically from zero at m -- 0 to 4- cc as m -> co, 
there is always a lifetime short enough to reduce the rate of interest to zero. From II, 11, 
however, the shortest m, say m.2, attainable by a closed economy in balanced growth is 
associated with s =  1, and satisfies /x0(l — e~vmi) =  g. Depending on the other parameters, 
mt may exceed, equal, or fall short of m2. In the first case, r =  0 for some saving rate 
less than unity ; in the second case r =  0 for s =  1 ; in the third case, the rate of interest 
remains positive even if all of output is saved and invested.

At the other end of the spectrum, as m -> oo, r p0 and this is the highest profit 
rate the technology can generate. For then the real wage is zero and investment of one 
unit of output earns a perpetuity of /n0 units of output per unit time. The saving rate

or
corresponding to infinite lifetime is s =  —.

Mo

4. The Golden Rule path once more
In II, 12 it was shown that a steady-growth path on which gross investment is always 

equal to gross quasi-rent generates the highest consumption path among all steady-growth 
paths. We can now see that the other standard characterization of the “ Golden Rule ” , 
that the rate of interest equals the rate of growth, also holds in this model. It is only 
necessary to put r =  g in (33) and observe that the resulting equation is the same as (21) 
or (22).

5. Harrod-neutrality and balanced growth : capital values
Using (26) and (31), for Harrod-neutral balanced growth, it is easy to calculate that

P(t, v) Mo (1 e>rU—v-m)' Mo (erU—v—m )  __p M t —v —m ï

(Putting v =  t and P(t, t) =  1 gives the equation for the rate of interest.) With this formula 
and (29), another straightforward calculation gives

(34) K(t) — I0eBtfx,0<-------- —------—------- - +  ; v  . , v  ,[rg r(X -  r)(g -  r) (X -  r)(g -X ) g(g -  r )(g -  X)

K(t) is a value; to be exact it is the competitive market value (in units of the single com­
modity) of the stock of diverse capital goods in existence at time t. Since we are limited, 
in any case, to paths of steady growth, the foresight involved in this valuation is no extra 
strain on the imagination. The ratio K(t)/I(t) will be constant along a steady-growth path. 
Its value depends on all the main parameters of the model X, g, and p0, as well as on m 
and r, and therefore on ,v.

Knowledge of K{t) permits the calculation of various net magnitudes. To begin with, 
since K ’ =  gK, (34) gives the ratio of net to gross investment as

fC
/

g K _  f 1 hge~rm__________ ge~Xm \e~«m
/  ^ { r  r(r -  X)(r -  g) (r  -  X)(g -  X) (r  — g )(g  -  X)

=  1 — Xmo
e-rm

(r -  X)(r -  g)
ç—i-m

(r -  X)(g -  X)
Q~gm

(r -  g)(g

(35)
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K'(The last equality is obtained with the aid of (33).) Now if we define co =  1 ---- - =

depreciation as a fraction of gross investment, we have 1

to ty-o +  :
-km e-gm

(r — X)(r -  g) (r — X)(g -  X) (r -  g)(g — X)J ’ 

Aji0 f — e-nm) e s m(l —
(36)

r — X I n r — g

Net output is gross output minus depreciation : Z =  Y  — co/; but I jY  =  s, so 
Z  =  [ - — co 1 /. Thus the ratio of net investment to net output is

_  K _  (1 — co)/_s — sco
Z  ,1 . r 1 — «o '(- -  co)/ s

Since co is nonnegative, a <  s. It would be interesting to know whether a is a monotone 
function of s on steady-growth paths, i.e. whether, as between steady-growth paths alike 
in all parameters except s, the one with higher s always has higher <r. We have not settled 
this question; so far as we know, it may be that the higher gross saving ratio, associated 
with a shorter lifetime, may so accelerate depreciation as to result in a smaller net saving 
rate. It is clear, however, that “ on the average ” a higher s is associated with a higher a. 
From the discussion in V . 3, the lowest gross saving rate compatible with full employment is

Q
s =  — (we must assume n0 >  g else continued full employment is not possible at all).

Along such a path co =  0, since m =  oo and r /x0 >  g; hence a ~  s. (Intuitively, as m oo, 
the real wage tends to zero, and there is no obsolescence. Since we have ruled out physical 
depreciation, co =  0. If there were physical depreciation-by-evaporation, co would tend 
to the rate of depreciation and a would be at its minimum when s is at its minimum.) 
At the other extreme, when s =  1, a =  1, so the net and gross saving rates reach their 
maxima together. But we do not know whether their overall positive association is broken 
for some values of s.

The symbol a has already been introduced for the share of gross quasi-rents in gross 
output. Let II be the share of net profits in net output. Then

a  F — Cü/_a  — cos coa(l — a )
Y  — co/ 1 — cos 1 — co

Thus II <  a. Also, when a =  s, II =  a; the maximal-consumption or golden-rule path 
can be characterized in still a third way : net savings equal net profits.

6. Harrod-neutrality and balanced growth: alternative savings functions
So far we have parametrized saving-investment behavior by the ratio of gross invest­

ment to gross output along full employment balanced-growth paths. The equations 
describing any such path may be collected :

(14)

(16)

(18)

L0 =  ^  (1 -  e-nm), 
X0n

w(t) =  X0e~Xmeu ,
s  =  g =  A  

^o(l -  r-**») Y f

1 =  ^ ( 1  
r

— e~rm) — Pa
r — X

(33) (e~Xm — e~rm).
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If we treat s, the gross savings ratio, as a parameter, then the given constants in these 
equations are L0, ^0, X0, n, X, g and s. The unknowns are I0, 70, w, m, and r, and they are

a
uniquely determined (subject to the restriction — <  s <  1). These equations “ decompose ”

Fo
in a particular way. We can say that (18) alone determines m, (14) determines I* (16) 
determines w, and the “ no-pure-rent ” equation (33) determines the rate of interest or 
rate of profit r.

The gross savings ratio is not the only possible parametrization of saving behavior. 
It is convenient because, in this one-commodity model at least, it is a purely “ physical ” 
description independent of all value considerations. But for that very reason it may also 
be inappropriate in an economy in which the capitalist motivations play a role. Alternative 
descriptions have been proposed; the commonest are to make net saving proportional 
to net income, or to net profit, or to make gross or net saving a linear function of the wage 
bill and gross or net profits. Which of these alternative saving functions is the true one 
is an important descriptive question. They have different consequences in many ways. 
But they do not introduce any new growth paths. It is clear from (33) and (36) that along 
a steady-growth path a constant 5 is accompanied by constant to, constant a, and constant 
IT. But different ways of characterizing saving behavior lead to different “ decompositions ” 
of the equivalent equilibrium conditions and therefore, from a superficial point of view, 
to different “ theories ” of interest and profit. Since this is sometimes misunderstood, we 
make some remarks here.

The most interesting alternative to consider from this point of view is the assumption 
that net saving is proportional to net profit :

K' = arnz.
It can be verified that (18), (20), (33), and (34) imply that IIZ =  rK, as they should, since 
both sides define net profits. It is obvious that along any balanced-gro vth path K  is a 
constant times /, so that K' =  gK. It now follows that with the present savings function

(37) rar =  g.

This equation replaces the first equality in (18) among the equilibrium conditions for steady 
growth.

Full employment and competition in the labor market continue to imply (14) and 
(16). These two equations, plus the second equality in (18) and the newly-derived (37), 
are one equation short of determining all the unknowns along a steady-growth path. There 
seem to be two and only two consistent ways of completing the system. One is to adopt 
(33) as a market equilibrium condition: the rate of interest must equalize the present 
value of future quasi-rents from a new capital good to its cost of production. The other 
requires that the uses of gross output exhaust gross output: Y = I  +  wN +  (1 — a)IIZ. 
But this requirement together with the other four equations just stipulated entails (33). 
So there is only one way to complete the system and we might as well let (33) stand.

The path just defined, with a particular value of or given, is of course the same as
<T

one of the paths defined earlier, namely the one with s =  —- — ------ -. But the new
^o(l -  e gm)

equilibrium equations decompose differently and so lend themselves to another inter­
pretation. Now (37) involves only one unknown, r. Thus we must say that it determines 
the rate of interest/profit, the “ no-pure-rent ” condition (33) determines m, and the rest 
goes as before. Thriftiness conditions and the rate-of-return conditions have exchanged 
roles. However (33) still holds, though the “ causal ” interpretation has changed.

The inessential character of the change is revealed by considering yet another assump­
tion about saving, that net saving is proportional to net income : K' =  aZ. The deter­
minate system of equilibrium conditions now consists of (14), (16), the second equality of
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(18), (33), and the new equation, which can be written 

(38) 1 -  w =  « |VoO -<*-*") _  w

where to is the ratio of depreciation to gross investment given in (36). Once again, the paths 
thus described are the same as those described earlier; they are merely characterized via 
a different parameter. But now the equations do not “ decompose ” at all. There is no 
one-at-a-time solution possible. Instead (33) and (38) must be solved simultaneously for 
r and m, after which the other unknowns follow as before. (Something similar is the case 
if the propensities to save wages and profits are positive but different.)

The only safe statement, therefore, is that the rate of interest is determined, in general, 
both by thriftiness conditions and by “ marginal ” conditions. This result is not only safe, 
but satisfying.

V THE INTEREST RATE AND THE SOCIAL RATE OF 
RETURN ON INVESTMENT

1. Definitions and preliminaries
In this part of the paper we revert to the more general assumptions of Part II. To 

be precise, we assume p(v) and X(v) to be continuous positive functions of v, with X(v) 
strictly increasing. The object of this part is to relate the competitive equilibrium interest 
rate defined in (27) to what we shall call the social rate of return on saving or investment. 
The point of the analogy is suggested by the fact that in a perfect capital market the ruling 
rate of interest functions as the private rate of return on savings.

Consider a person who disposes of a certain amount of wealth, JF(0), at time zero 
and who is obliged for some reason to pursue a saving program such that his wealth at 
some given later time T  is equal to a given amount W(T). His wealth at time zero may con­
sist of a current stock plus the sum of his discounted wage income in the time interval 
[0, T]. This person is free to choose any stream of consumption c(t), which has a present 
value equal to W{0) minus the present value of W(T) or, in a formula,

ÇT —  r{u)du — Jr  r(r)dt

(39) e c{t)dt =  W(0) — e W(T).

Hence, as before, r(t) is the instantaneous interest rate ruling in the market at time t. If 
we compare any two such programs cx(r) and c2(t) and define Ac(r) =  Cj(r) — c2(t) we get 
from (39)

p7" — J* r{u)du n j  J* r{u)du

(40) J e Ac(t)dt =  I e [c,(t) — c2(t)]dt =  0.

Because of (40) it is natural to refer to the expression e ta r{u)du as the rate of transformation 
between consumption at time t and consumption at time zero. Giving up one unit of
present consumption permits eta r{u)du additional units of consumption at time t. Thus 
the instantaneous rate of return on savings is the geometric rate of change of the trans­
formation rate as t varies. Especially, as t approaches zero we get

(41) e ^ mdu ~ \ +  r{o)t.

If we choose the time unit small enough, we can say that r(o) expresses the net gain in total 
consumption, if consumption is reduced by one unit at time zero and correspondingly in­
creased after one period. The same interpretation will be given to the social rate of 
return on savings.
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2. The social rate o f return on saving
Under competitive conditions, the private rate of return on savings is independent of 

the individual’s decisions. Like any price, however, the social rate of return depends on 
the aggregate of investment decisions. It can only be determined after the whole invest­
ment path (for the past as well as for the future) has been decided. Let us call this pre­
determined path 7*(f). The development of the labor force, L(t), is also given. We can 
now compute the corresponding values for Y*(t) and C*(t).

(42) Y*(t) =  f fi(v)I*(v)dv,
J t—m*(t)

(43) C*(f) =  Y*(t) -  7*(0,

where the age of the oldest capital in operation at time t, expressed by m*(t), is given by 
the now familiar equation

(44) L ( t ) -  P  ^  I*(v)dv.
J  /- m*, >'(V)

As in II, 3, our assumptions about the technology entail that the economy is efficient in 
the sense that Y*(t) is the capacity output of the economy at each instant of time. Without 
a change in the investment path I*(t), no higher gross output than Y*(t) is possible for any 
t. In other words, in order to achieve a higher volume of gross output in the future the 
economy has to increase the current rate of accumulation, which means that it has to 
reduce current consumption.

The concept of a social rate of return on savings makes sense only in the case of 
efficient paths. For if Y(t) were limited not by the capacity to produce but by effective 
demand, then a rise in consumption today could be effected without changing the future 
capacity to produce consumption goods. But for efficient paths Y*(t) the social rate of 
return on investment links small changes in 7(f) to small changes in C(f) for given L(f), 
just as the marginal productivity of labor relates small changes in L(t) to the resulting 
small changes in C(t) for given 7(f).

There are of course infinitely many ways in which marginal changes of the function 
7*(f) can be introduced. A7(f), the difference between the old and the new investment 
path, may be almost any function of time, as long as t lies in the interval [0, T \  which we 
are considering. Since the past is history, A7(f) =  0 for t <  0. We will confine ourselves 
to the effects of variations in the finite period from zero to some arbitrary T(0 < T  <  oo), 
and assume that A/(f) — 0 for t >  T. Let us write A7(f) =  e\|/(f) where s is a constant and 
\|/(f) is any bounded function of t for 0 <  t <  T  and equal to zero otherwise. Note that 
7(f) itself is not entirely arbitrary. It must be nonnegative and no bigger than Y(t). To 
be sure of room to introduce small changes of 7*(f) in either direction, we assume that

(45) inf 7*(f) >  0 and inf [ Y*(t) — 7*(f)] >  0.
0 < t < T  0 < t < T

Also, as will be seen, we have to assume that I*(t) is such that

t — rtî*(f)^ =  OO.

(See III, 5 Lemma 2 for the case of constant s.)

This innocuous assumption means that along the original path the volume of investment 
is adequate to ensure that the economic lifetime of capital remains finite (or becomes 
infinite slowly). We now have

(47) 7(f) =  I*(t) +  ey(/);

(46) lim
t-> oo
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for e sufficiently close to zero I(t) is a feasible investment program, differentiable with 
respect to e at the point e =  0. From (47) we infer

(48) L(t)

which is an equation for m{t), and

- I M»A(v)][/*(v) +  e^(v)]Jv

(49) n o r M(v)[/*(v)
m { l )

E\|/(v)]é?V

which determines Y  after m{t) has been computed from (48). Now we can differentiate 
both sides of (48) and (49) with respect to e for e =  0. Then we get from (48), since LJj) 
does not depend on e,

0 a n o
Se

« r  w
J  t—m*(

[K0A(0M 0«?v + d t  -
Ht — m*(0)

/*(/ — m*(t)) dm(t) 
ds z — 0

or, since 7*(0 >  0 and ^ >  0 
w  Ht — m*(t))

(50) dm{t)
0e

r b*
J  I—m"I

K0/X(v)]vv(v)dv
m___________

c = 0 d t  -
X(r — m*(t)) r*(t -  m*(0).

Differentiation of (49) yields

s no

But

(51)

0S

dm{t)
0£

=r! = 0 J 1—1
cm(t)li(v)\\i(v)dv +  fi(t — — m*(0)

■m*(0 ce

is given by (50). So we have
e = 0

0 7
0e

=  [ '  / 

s =  0 J  t—m*{t)
ft(v)\|i(v)dv — X(? — m*(t)) f '  n o

J X(v)
Y(v)i/v.

If we subtract m
ds =  \|/(0 from (51) we get an expression for the marginal change in

C(0, which we may call SC*(0 
dC(t)(52) 8C*(0 = f V(

0 J  î—m*
V(0m(v)[1

(I)
Ht -

X(v) ]dv — \|/(0.

Comparison with (10) in II, 6 shows that the marginal change in consumption at 
time t is equal to the competitive quasi-rents earned at time t by the incremental investment 
less the current cost of incremental investment. If we consider very small e, we can write

C(0 = C*(0 +  eSC*(r).
Hence in the neighbourhood of C*(t), s8C*(0 plays the same role as AC(0 in the case of 
the private individual. In that case there existed a discount factor

( 1 r(u)du
e 3 °  ,

such that any admissible AC(t) satisfied
f t r{u)du 
Jo

j : AC{i)dt =  0.
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Can we find a corresponding function r*(t) such that eSC*(t) must satisfy a similar equation ? 
Observe that \|/(t) =  0 for t >  T  and that because of (46) there exists a Tx such that 
t — m*(t) >  T  for t >  7). Therefore after 7) the economy is no longer affected by the 
perturbation function \|/(t). This means that we have to look for a function r*(t) (depending 
on /*(/) but not on vp(/)) with

f r ,  — J' r'{u)du

(53) s e SC*(t)dt =  0

for any 8C*(t), which can be generated by some admissible i|r(f). If such a function exists,
we may call eSo' [u)du the marginal social rate of transformation between consumption 
at time zero and consumption at time t. For any fixed t society could increase 8C*(t) by
e So' {u)du units, if it were to reduce 8C*(0) by one unit (this change would be achieved by 
changing the function i|/(t)). It is then natural to call r*(t) the social rate of return on 
savings. For a small unit period we could express the marginal rate of transformation 
between consumption now and consumption t periods later by

e S‘o r' {u]du~ 1 +r*(0)r.

By giving up one unit of consumption today society could gain 1 +  r*(0) additional units 
of consumption after one period.

3. Equality o f private and social rates o f return
We proceed now to prove that in the model of this paper for any given I*(t) (fulfilling 

the requirements (45) and (46) there exists a function r*(t) such that (53) holds. Moreover 
we shall see that this unique social rate of return r*(t) is equal to the instantaneous rate 
of interest r(t), which in turn, of course, depends on the particular reference path I*(t).

Substituting (52) into (53) and cancelling the e on the left hand side of (53) produces 
the following double integral

(54)
— f* r*(u)du Jo j  f  V(v)Kv) [1 -

I J  t— m*(t)

X(t — m*(t))
My)

\dv - dt.

Now we introduce a set function X*(v) defined by 

X*(v) — {t : t — m*(t) <  v <  t}.

X*(v) has a simple economic interpretation : it is the set of all instants t at which machines 
of vintage v are operating. From this interpretation of X*(v) we can infer the equation

(55) Jjr*(v)
M v)[i

l(t -  m*(t))
MM

]e
■ j* rl,u)dil

dt =  1.

This is merely (27) of IV, 2 in a slightly altered notation. We write p*(t, v) for the quasi­
rent at time t of a capital good of vintage v along the reference path !*(/).

We define the set Xs(v) as

X s(v) =  {t : feX*(v), 0 <  t <  S}.

X s(v) is the set V*(v) restricted to the time interval [0, 5], Now, by some calculation, 
for any S >  0.
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f i  r - J 0 r Mdu C< 1
\ <e v(v)p*(f, v)dv l dt =
J O I J J

(56) f*J —m*(o)

— r*{u)du 
Jo

V(v) [J Jf.lv)

- f v r'(u)du

P*(t, v)dt j  dv.

To prove (56), it is enough to reverse the order of integration and observe that
/'t fv rt

r*(u)du =  + I . (We are indebted to Professor Kenneth Arrow for simplifying
Jo Jo Jl>
the argument here.)

If we take into account that \p(v) =  0 for v <  0 and v > T  (56) turns into

(60)

j:
f:

-if - JJr*Mdu r  t ì
y(v)p*(t,v)dv\dt =

J J
T, f  - J '  r*(“idu

V(v) f -J x*(y)
■ \‘v r*{u)du

p*(t, v)dt J dv

This is so, because for the relevant v’s (0 <  v <  T) we have Yf,(v) =  T*(v). Now we can 
substitute (60) into (54) :

(61)
-  j '  r*(u)du

p*{t, v)dt — 1 dv.

For (61) to be true for all admissible functions \|r(v) it is a necessary and sufficient condition 
that

(62)
—  J 1 r*{u)du

e p*(t, v)dt — l
X \ r )

for all v in the interval [0, T], (The left-hand side must be equal to unity at least for a dense 
subset of [0, T\. But it can easily be shown to be a continuous function of v, whence it 
must be equal to unity everywhere.)

Comparison of (62) with (17) or (27) of V, 2 shows that r*(t) satisfies the same integral 
equation as r(t), whose solution is known to be unique. It follows that r*(t) =  r(/), as was 
to be proved. VI

VI THE KEYNESIAN CASE: OUTPUT LIMITED BY 
EFFECTIVE DEMAND

1, Output and Employment
Up to now we have dealt only with the case of full employment. Without inquiring 

into the causal mechanism, we have assumed that employment could be identified with 
the exogenous supply of labor. This is a double assumption (a) that at each moment of 
time the stock of surviving capital is adequate to employ the whole labor force, and (b) 
that effective demand is always adequate to buy the output producible at full employment 
from the existing stock of capital. Thus we have placed ourselves in the second of the three 
regimes mentioned in II, 3 : output is limited by the supply of labor.

Regime I, in which output is limited by a shortage of capital while labor is redundant, 
has no application to an advanced industrial economy, though it may be relevant for the 
advanced sector of a developing economy. We turn in this part of the paper to the third,
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or Keynesian, regime, when both capital and labor are unemployed, and output is limited 
not by scarce resources but by effective demand.

The basic equations (7) and (8) continue to hold, but their interpretation is different. 
In the full-employment regime, N(t) is replaced by L(t), m(t) is determined by (7) and Y{t) 
by (8). That is : the margin separating active from idle capital is fixed by the requirement 
that the entire labor force find employment; and output is whatever they are capable of 
producing. This would presumably be true in a planned economy, or in one where a 
flexible fiscal policy regulated aggregate demand accurately. Pre-Keynesian neo-classical 
economics relied on a market mechanism: so long as there was unemployment the real 
wage would fall; older and older vintages of capital would be able to earn positive quasi­
rents; as they entered production, employment would rise. Modern short-run income 
analysis rests on the presumption that this cannot or does not happen, or does not happen 
quickly enough to matter. The causal structure in (7) and (8) is reversed. If we take 
aggregate demand K(t) as given (in the simplest case, from exogenous investment via the 
multiplier), (8) determines m(t) and (7) determines N(t). That is: the margin separating 
active from idle capital is fixed by the requirement that output just match real effective 
demand ; and employment is whatever is necessary to man that capital. If the division of 
output between consumption and investment is determined, a model like this is clearly 
able to generate its own future time-path.
2. Aggregate Supply and Demand

There must, of course, be a market mechanism underlying a Keynesian economy, 
though it cannot be the same as the neo-classical mechanism. For one thing, a Keynesian 
economy must have at least one more asset, money, and therefore one more price, the 
money wage, than the neo-classical aggregative model we have been discussing. Otherwise 
there is no explanation for over-saving. Without the attraction of some other store of 
value, investors would simply increase consumption whenever capital accumulation became 
unattractive. Nor is there, without money, any opening for the trouble that may arise 
from stickiness of money wages and prices. A mechanism close to that described in The 
General Theory itself is the following. Suppose W(t), the money wage, is given in the short- 
run; W(t) or its rate of change may depend on past unemployment, but for the current 
instant it is given. Now equation (9) can be rewritten

(9') m = W ( t )

~h(t — m(t))
where P(t) is the money price level. Together (8) and (9') define an aggregate supply curve, 
giving Y(t) as a function of Pit). Any P(t) determines, via (9'), an mit). That m(t), inserted 
in (8), yields the corresponding F(f). More descriptively, with a sticky money wage, any 
arbitrary price level fixes the margin between those vintages of capital which can operate 
at a profit and those which cannot; the corresponding supply of output is the capacity 
of the profitable vintages. Obviously Y(t) is an increasing function of Pit).

A detailed treatment of aggregate demand would be out of place in this essay. One 
limiting possibility is that real aggregate demand is independent of the price level for a 
given money wage. More generally, real demand might depend on the price level through 
the distribution of income, through the real volume of cash balances, or in other ways. In 
any case, the intersection of the aggregate demand and supply curves determines the price 
level and real output.

This is a perfectly-competitive Keynesian model, with (9') doing the work of a marginal- 
product-of labor equation. Here—as in the full employment model—it is possible to 
allow for imperfectly-competitive pricing. Then (9') can be altered to

(9") Pit) =  (1 +  Tl) Wjt) . 
X(f — mit)) ’

H
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î) is the percentage by which price is marked up over prime costs on no-rent capital. 
So long as p is roughly constant the theory can be worked out as before, though the results 
differ in more or less predictable ways. (Of course the equality of private and social rates 
of return is broken.) It should be realized that in short-run equilibrium the real wage may 
be at its competitive level for the current level of employment. Real-wage rigidity means 
only that unemployment does not make the real wage fall.

VII EXTENSIONS AND OPEN QUESTIONS 

1. Depreciation and loss o f productivity
It is quite straightforward to make allowance for age-dependent physical depreciation 

within our simple technology. Let S(x) be the proportion of an instant’s gross investment 
that survives to age x. Then the fundamental employment and output equations become

N (t)'~  P  ^  Kt ~  v)r(v)dv,
J t - M t )  x(v)

y(t) =  (* Kv)Mt — v)I(v)dv.
J I—m(t)

The easy special case is, of course, depreciation-by-evaporation : 8(x) =- e~&x. The results 
are generally predictable. The case of “ one-hoss-shay ” depreciation is mixed. If 0 is
the physical lifetime of capital, 8(x) =  <j q 0 < x < ^‘ Whenever the economic facts

require m(t) g  0, the physical lifetime is irrelevant, and the analysis is exactly as in the 
body of the paper. But when the economic facts would make m(t) >  0, the physical lifetime 
has primacy and shortage of capital supervenes. It is laborious to piece the two regimes 
together but it can be done.

Related to, but not identical with, the idea of physical depreciation is the notion that 
capital goods lose productivity (or require increasing maintenance) over their lifetime. 
Suppose, for concreteness, that plant constructed at time v has a capacity at time t ^  v 
of p.{t, v) units of output. It is now complicated to say what “ technological progress ” 
means, since it may well be desirable to have capital goods which are less productive when 
new but lose productivity more slowly with age. It is unambiguously progress if v' >  v 
implies /x(v' +  x, v') >  t*(v +  x, v) for all a >  0 (and labor requirements are not higher 
on vintage v' capital). But this is unnecessarily strong. The simple special case is ;x(/, v) =  
iy(i — v)fi(v). Then one has

m  =  T  8 ( f  -  v ) /(v )d v ,
J t— mlt) k(v)

Y(t) =  j \j/(r — v)jix(v)S (t — v)l(v)dv.
J (—m(()

The distinction between the phenomenon and depreciation is that half-depreciated capital 
is assumed to require only half the labor it did when new; but capital that has lost half its 
productivity is assumed to retain its original labor requirement. (There is a symmetric 
hypothesis; output capacity remains but labor requirement increases with age.) It is not 
hard to see that—ignoring depreciation again—the real wage must be y(m)/.(t — m) 
where, as usual, m is the economic lifetime of capital. It follows that

p(L v) =  p ( v ) [ W  -  v)
\|/(ni)X(r — m) . 

My) J
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If we revert to the exponential Harrod-neutral case and put \p(̂ e) =  e ^ x, it turns out 
that equilibrium paths have constant m and a constant interest rate satisfying

1 =  ^  1 -  e-{r + T,™ _  p 0 (e_& + k)m _  +
r +  y  r — X J

Comparing this equation with (33) one sees that if the triple (r*, X*, m*) satisfies (33), 
then the triple (r* — \|f, X* — vy, m*) satisfies the equation above.

2. Partially capital-augmenting technical progress
Although the basic model is quite general—within its fixed coefficient limitations— 

we have concentrated very heavily on the case of Harrod-neutral or purely-labor-augmenting 
technical progress. There are two reasons for this. First, only in this case can we get 
clear and simple analytical results. Second, it may be that the broad outlines of economic 
history—in particular, the apparent long-run trendlessness of the marginal efficiency of 
capital—suggest Harrod-neutrality more than they suggest any other simple hypothesis 
about technical progress. Recent research, however, casts considerable doubt on this 
reading of the facts.

Under Harrod-neutrality, constant m and constant s go together. When there is any 
capital-augmenting technical progress—including the other standard case of Hicks- 
neutrality—we must choose between them. In general a constant gross saving ratio requires 
lim m{t) =  0 1 and therefore, a rate of interest falling toward zero. On the other hand,
/-> CO
if m{t) is constant, then output will grow at the usual natural rate while the gross saving 
ratio will fall exponentially and the rate of interest will rise. We illustrate these remarks 
by sketching the Hicks-neutral case.

Let X(v) =  \ e Xv and p(v) =  PqC^, and let employment be N0ent. Then the funda­
mental equations for employment and output are

N (t)= N 0ent= ^  P  e"i-'-]'Kv)dv,
*0 J t— mU)

Y(t) =  po P  e^I(v)dy;
J  t—m(t)

P  =  0 returns us to Harrod-neutrality, while p  =  X gives Hicks-neutrality. On a path 
with gross investment growing exponentially at the rate g,

N0ent =  ------- —-------  /0e<n-x+f)t(i _  e-(\i-r+g)mu)\
X0( p  -  X +  g)

Y(t) =  V <̂+9,»( 1 — e-^+?)nil»).
g +  M

If m(t) is to be constant along this path, it is necessary that the rate of growth of investment 
g  =  n  +  X — p .

In that case
N  =  (1 -  er*»),

n X  o

Y(t) =  Y0e<ra+Mf =  !L̂ °  e(n+r.)t (J _  e-(n+X)OT);
—1— X

1 We owe Mr. George Akerlof of M J.T. the observation that this is so if there is any capital-augmenting 
progress.
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thus output must grow at the rate n +  X. Constant economic lifetime for capital is not 
compatible with a constant gross savings ratio ; indeed

ML = _____ ”  +  x e-M.
Y(t) /x0( 1 -  e-<m*>»)

the gross savings rate must fall at the rate of capital-augmenting technical progress. Output 
grows more rapidly than investment. When there is some capital-augmentation, our 
one-sector model begins to strain at the seams. The same gross output and the same 
consumption at two different times mean two different things, because the “ same ” 
remaining gross investment generates more capacity at the later time. The classical 
problem of the definition of “ income ” arises. As Arrow has pointed out, for some 
possible definitions, the ratio o f“ saving ” to “ income ” is at least asymptotically constant.

Even if m(t) is permitted to vary in time, a constant ratio of gross investment to gross 
output is incompatible with exponentially-growing gross investment and exponentially 
growing employment. The fundamental equation for output implies

m(t) =
H +  9

log 1 -
Vo

Thus m{t) -s- oo as t decreases t o -  log ( Even for larger values of t, substitution
9- +  9 )

of this equation for m{i) into the fundamental equation for employment leads to

Nn /xoA)
— ^ +  g)

g[V‘--'L+g-n)t 1 - n +  g-------1
Vo

-ßt
9+ 9

which is an impossibility if /x >  0.
Akerlof has pointed out the following line of argument which proves that m{t) -> 0 

whenever /x >  0 and s is constant. Although we know that the investment and output 
paths are not exponential, we can be sure that the output path corresponding to ft >  0 
is no lower than the output path corresponding to n =  0 and the same values for all the 
other parameters. Therefore, it follows from the theorem of III, 5 that for sufficiently large 
t Y(t) S: c e,%+n where c is a constant and s is any positive constant, however small. 
Gross investment, then, eventually exceeds sce^+n~^‘. Each unit of new gross investment

provides employment equal to — Thus current gross investment provides employ-
\>

ment in excess of ~ 1 c e'"+k‘- E1'. If e is chosen to be less than /x, employment on currently-

produced capital will eventually grow faster than an exponential itself growing faster than 
the labor force. From what has been said about constant-m paths, it is clear that m(t)
can have no positive lower limit. So lim m(t) =  0.

/—► 00
If we turn to the price relationships, (10) says that

P (t, V) =  ^  (1 -  e^-m -v));

no longer a function only of the age of capital.
If the saving rate behaves so as to keep m constant, it is clear that the quasi-rent on 

capital t — v years old grows exponentially with v. This is true for the whole stream of 
quasi-rents from t — v to t =  v +  m. Hence the rate of interest must be rising with calendar 
time in order to keep the present value of quasi-rents from new investment always equal 
to 1. On the other hand, if the saving ratio is constant, or falls slowly enough so that 
m(t) -> 0, the shortening of the length of life offsets the rising trend of quasi-rents. The 
result may be a constant or falling rate of interest.
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For the equilibrium interest rate one can apply (27') along a path with constant m 
to get

I'm ~  J '+JC 'W*
1 =  /Li0eM' I (1 — eX'x~mi) e dx.

Trial shows that the interest rate cannot be constant, i.e., the maturity structure of interest 
rates cannot be flat. The equation for r(t) can be transformed by differentiating it with 
respect to t. The result, after some rearrangement is

Ct+m— J“ >■<*)*
r(t) +  X/*0eM' I e du — /A0e^'(l — e~Km) ! - >. — \i.

We have not been able to solve this equation.
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