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COMPETING THEORIES OF VALUE: A
SPECTRAL ANALYSIS
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This paper is based on a spectral–controllability analysis of the Sraffian price system
and develops a relevant reconstruction of the theory of value. It shows that (i) the
hitherto competing theories of value correspond to specific complex plane locations
of the eigenvalues of the vertically integrated technical coefficients matrix; and (ii)
the real-world economies cannot be coherently analyzed in terms of the traditional
theory of value (classical, Marxian, Austrian, and neoclassical), despite the fact that
they are characterized by rather low degrees and relatively low numerical ranks of price
controllability. Hence, on the one hand, the Sraffian theory of value is not only the
most general to date, but also empirically relevant. On the other hand, the real-world
economies constitute almost uncontrollable systems, and this explains, in turn, the
specific shape features of the empirical price–wage–profit rate curves that are at the
heart of the capital theory debate.
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I. INTRODUCTION

In spite of their fundamental conceptual differences, the theories of value of the
traditional political economy (classical, Marxian, Austrian, and neoclassical) reduce,
in essence, to the existence of an unambiguous relationship between, on the one
hand, the movement of the long-period relative price of two commodities arising
from changes in income distribution and, on the other hand, the difference in the
capital intensities of the industries producing these commodities. Since Sraffa’s (1960)
contribution, it has been gradually recognized, however, that such a relationship does
not necessarily exist: Even in a world of fixed input–output coefficients and at least
three commodities, produced by means of themselves and homogeneous labor, long-
period relative prices can change in a complicated way as income distribution changes.
This phenomenon has crucial implications for all the traditional theory of value,
capital, distribution–growth, and international trade, while its investigation led to
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the formation of a new theory of value, namely, the ‘Sraffian theory of value,’ which
includes the abovementioned relationship between price variation and capital intensity
difference as its special or limiting case.

Following a post-2000 line of research that couples Piero Sraffa’s theory of value
with Rudolf Emil Kalman’s (1960) general theory of control systems, this paper
develops a unified treatment of the problem of value–capital on both theoretical and
empirical grounds.1 In particular, it shows that the hitherto competing theories of
value correspond to specific complex plane locations of the eigenvalues of the vertically
integrated technical coefficients matrix, identifies new aspects of the Sraffian theory
of value, by generalizing Sraffa’s (1960, pp. 36–38) (in)famous ‘old wine–oak chest’
example, and, finally, zeroes in on the spectral ‘imprint’ of actual price–wage–profit
rate systems by detecting the singular value configuration of the relevant Krylov–
controllability matrices. Hence, it (i) points out a spectral reduction or reconstruction
of the theory of value; (ii) highlights the general importance, both theoretical and
applied, of the Sraffian theory of value; and (iii) supports the recently proposed link
between the tendency of actual economies to respond as uncontrollable systems and
the specific shape features of the empirical price–wage–profit rate curves (Mariolis
and Tsoulfidis, 2018). If the key issue is ‘to decide whether the real world is nearer to
the idealized polar cases represented by (a) the neoclassical parable or (b) the simple
reswitching paradigm’ (Samuelson, 1980, p. 576),2 then our analysis and findings
suggest that the real world is far from the former case and, therefore, close to the
latter case.

The remainder of the paper is structured as follows. Section II analyzes the Sraffian
price system and determines the complex plane location of the hitherto competing
theories of value. Section III provides evidence indicating the empirical relevance of
the Sraffian theory of value and, at the same time, the almost uncontrollability of actual
economies. Finally, Section IV concludes the paper.

II. COMPETING THEORIES OF VALUE AND NON-DOMINANT
EIGENVALUES

II. I.a The long-period price system

Consider a closed, linear and viable economy involving only single products, ‘basic’
commodities (in the sense of Sraffa, 1960, pp. 7–8), circulating capital and homoge-
neous labor. Furthermore, assume that: (i) wages are paid at the end of the common
production period; (ii) the matrix of direct technical coefficients is diagonalizable; and
(iii) the price of a commodity obtained as an output at the end of the production period
is the same as the price of that commodity used as an input at the beginning of that

1 The seminal papers in this field are Mariolis (2003); Mariolis and Tsoulfidis (2009).
2 Cited by Cohen (1993, p. 155). Zambelli (2004, p. 107, footnote 2) aptly observes that re-switching is

a sub-case of the—much more general—non-neoclassical case.
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period (‘stationary prices’). Hence, the price side of the economy is described by3

pT = wlT + (1 + r) pTA (1)

where pT denotes a 1xn vector of production prices, w is the money wage rate, r is the
uniform profit rate, lT (> 0T) is the 1xn vector of direct labor coefficients, and A is
the irreducible nxn matrix of direct technical coefficients, with λA1 < 1.

After rearrangement, equation (1) becomes

pT = wvT + ρpTJ (2)

where vT ≡ lT[I − A]−1 (> 0T) denotes the vector of vertically integrated labor
coefficients, or the traditionally so-called ‘labor values,’ and H ≡ A[I − A]−1 (> 0)
the vertically integrated technical coefficients matrix. Moreover, ρ ≡ rR−1, 0 ≤ ρ ≤ 1,
denotes the relative profit rate, which equals the share of profits in the Sraffian
Standard system, and R ≡ λ−1

A1 − 1 = λ−1
H1 the maximum possible profit rate (i.e.

the profit rate corresponding to w = 0 and p > 0), which equals the ratio of the net
product to the means of production in that system (Sraffa, 1960, pp. 21–23). Finally,
J ≡ RH denotes the normalized vertically integrated technical coefficients matrix,
λJ1 = RλH1 = 1, and the moduli of the normalized non-dominant eigenvalues of
system (2) are less than those of system (1), i.e. |λJk| < |λAk|λ−1

A1 holds for all k (see,
e.g. Mariolis and Tsoulfidis, 2016a, p. 22).

If Sraffa’s Standard commodity is chosen as the numéraire, i.e. pTz = 1, where
z ≡ [I−A]xA1 and lTxA1 = 1, then equation (1) implies that the ‘wage–relative profit
rate curve’ is the following linear relation:

w = 1 − ρ (3)

with w(0) = 1 and w(1) = 0. Substituting equation (3) into equation (2) yields

pT = (1 − ρ) vT + ρpTJ (4)

or, if ρ < 1,

pT = (1 − ρ) vT[I − ρJ]−1 = (1 − ρ) vT
[
I + ρJ + ρ2J2 + ρ3J3 + . . .

]
(5)

3 The transpose of an n × 1 vector x is denoted by xT, and the diagonal matrix formed from the elements
of x will be denoted by x̂. Furthermore, λA1 will denote the Perron–Frobenius (P–F) eigenvalue of a semi-
positive n × n matrix A ≡ [aij ], and (xA1, yT

A1) the corresponding eigenvectors, while λAk, k = 2, . . . , n and
|λA2| ≥ |λA3| ≥ · · · ≥ |λAn|, will denote the non-dominant eigenvalues, and (xAk, yT

Ak) the corresponding
eigenvectors. Finally, e will denote the summation vector, i.e. e ≡ [1, 1, . . . , 1]T, ei the ith unit vector, and I
the nxn identity matrix.
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which gives the commodity prices, expressed in terms of Sraffa’s Standard commodity,
as polynomial functions of ρ.

Equation (4) indicates that pj is a convex combination of vj and pTJej , where the
latter equals the ratio of means of production in the vertically integrated industry
producing commodity j to means of production in the Sraffian Standard system. From
this equation it follows that pT(0) = vT and pT(1) is the left P–F eigenvector of J,
expressed in terms of Sraffa’s Standard commodity, i.e.

pT(1) =
(
yT

J1z
)−1

yT
J1 =

(
yT

J1 [I − A] xA1

)−1
yT

J1

or, since [I − A]xA1 = (1 − λA1)xA1 and matrices A and J have the same set of
eigenvectors,

pT(1) =
[
(1 − λA1) yT

J1xJ1

]−1
yT

J1 (6)

Equation (5) is the reduction of commodity prices to ‘dated quantities’ of normal-
ized vertically integrated labor in terms of Sraffa’s Standard commodity. In the general
case, therefore, commodity prices are ratios of polynomials of degree n − 1 in ρ and,
therefore, may admit up to 2n − 4 extreme points.

Finally, it should be added that:4 (i) Non-diagonalizable systems are of measure zero
in the set of all systems and, hence, not generic, while given any A and an arbitrary
ε �= 0, it is possible to perturb the entries of A by an amount less than |ε| so that the
resulting matrix is diagonalizable. (ii) These fundamental price relationships remain
valid for the cases of (a) fixed capital à la Leontief–Bródy; and (b) differential profit and
wage rates (provided that these variables exhibit a stable structure in relative terms).
For instance, in the former case, vT and H should be replaced by lT[I − (A + AD)]

−1

and AC[I − (A + AD)]
−1

, respectively, where AD denotes the matrix of depreciation
coefficients, and AC is the matrix of capital stock coefficients. Nevertheless, the said
price relationships do not necessarily remain valid for joint production economies.

II. I.b Controllable and almost uncontrollable price systems

Consider the following dynamic version of the price system (2):

pT
t+1 = wt+1vT + ρnpT

t J, t = 0, 1, . . .

where ρn denotes the exogenously given nominal relative profit rate, and [w0 =
0, pT

0 = 0T] (consider Solow, 1959). This dynamic system is said to be ‘completely
controllable’ or ‘controllable of rank n’ (Kalman, 1960) if the initial state pT

0 = 0T

can be transferred, by application of wt, to any state, in a finite length of time. Thus,

4 See Aruka (1991, pp. 74–76); Kurz and Salvadori (1995, Chaps. 7, 8, and 11); Mariolis and Tsoulfidis
(2016a, pp. 22–32); Sraffa (1960, Part 2).
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as Luenberger (1979) remarks, complete controllability corresponds directly to the
intuitive notion of being able to control the system state (p. 277).

The said system is completely controllable iff the n×n Krylov–controllability matrix,
i.e. the matrix of the first n dated quantities of normalized vertically integrated labor
(see equation (5)),

K ≡
[
p(0), JTp(0), . . . ,

(
JT

)n−1
p(0)

]T

has rank equal to n or, equivalently, iff pT(0) is not orthogonal to any (real or complex)
right eigenvector of J.5 By contrast, iff rank[K] = m < n, then the system is said to
be ‘uncontrollable’ or, more specifically, ‘controllable of rank m’. Iff the dimension of
an eigenspace associated with an eigenvalue of J is larger than 1 or, equivalently, iff J
satisfies a polynomial equation of degree less than n, then the system is uncontrollable
whatever pT(0) is (Ford and Johnson, 1968).6

Furthermore, it can be proved that, when the dynamic system is completely
controllable, the stationary price vectors relative to any n distinct values of the profit
rate (0 ≤ ρ ≤ 1) are linearly independent (Schefold, 1976; Bidard and Salvadori, 1995;
Kurz and Salvadori, 1995, Chap. 6). Therefore, the curve pT(ρ) is entirely contained
in a space of dimension n, and cuts any space of dimension n′(< n) in no more than
n′ points. Hence, the price movement arising from changes in income distribution can
be characterized as—somewhat—‘erratic.’ By contrast, when the dynamic system is
controllable of rank m(< n), the stationary price vectors relative to any m + 1 distinct
values of the profit rate are linearly dependent and, therefore, the curve pT(ρ) is entirely
contained in a space of dimension m. In that case, there are n-m vectors z′ such that
Kz′ = 0 and, therefore, pT(ρ)z′ = 0 (see equation (5)). Hence, a change of numéraire,
from z to z + αz′, where α is a given scalar, has no effect on the wage–relative profit
rate curve (and on the stationary prices; Miyao, 1977). In a word, then, we have the
following pairs of ‘opposites’: controllability (uncontrollability) implies unpredictable
(predictable) stationary price and wage movements arising from changes in the profit
rate. And predictability decreases with increasing rank of controllability.7

This approach provides only a yes/no criterion for complete controllability, while
uncontrollable systems are of measure zero in the set of all systems and, thus, not

5 The rank–eigenvector conditions for controllability are known as ‘Popov (1966)–Belevitch (1968)–
Hautus (1969) tests or criteria.’

6 For various versions of the concept of controllability, and its relevance to economic analysis and policy,
see Aoki (1976); Hansen and Sargent (2008); McFadden (1969); Wohltmann (1985); and the review paper
by Chatelain and Ralf (2020). In the 1970s, Schefold (1971, 1976) introduced the following concept of
‘regularity’ of a production technique: A production technique [A, lT] is said to be ‘regular’ iff (i) lT is not
orthogonal to any right eigenvector of A; and (ii) there exists exactly one right eigenvector (up to a factor)
associated with each eigenvalue of A. Equivalently, iff the matrix [l, ATl, . . . , (AT)n−1l]T has rank equal to
n. Condition (ii) is superfluous.

7 For a detailed restatement of fundamental structural features of Sraffa’s theory of value in terms of
Kalman’s general theory of control systems, see Mariolis et al. (2021, Chap. 2).
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generic or, in other words, systems are almost always controllable (Kalman et al., 1963;
for a recent discussion, see Cowan et al., 2012). However,

[i]n the real world [ . . . ] it may not be possible to make such sharp distinctions. [ . . . ]
The problem with the standard definition of controllability [ . . . ] is that it can lead
to discontinuous functions of the system parameters: an arbitrarily small change
in a system parameter can cause an abrupt change in the rank of the matrix by
which controllability [ . . . ] is determined. It would be desirable to have definitions
which can vary continuously with the parameters of the system and thus can reflect
the degree of controllability of the system. Kalman et al. (1963) recognized the need
and suggested using the determinant of the corresponding test matrix [K] as a
measure of the degree of controllability [ . . . ]. Friedland (1975), noting that basing
the degree of controllability [ . . . ] on the determinant of the test matrix suffers
from sensitivity to the scaling of the state variables, suggested using the ratio of the
smallest of the singular values to the largest as a preferable measure. (Friedland,
1986, p. 220; emphasis added)

In this connection, therefore, matrix J can be decomposed as (‘spectral decomposition’;
see, e.g. Meyer, 2001, 517–518)

J =
(
yT

J1xJ1

)−1
xJ1yT

J1 +
n∑

k=2

λJk

(
yT

JkxJk

)−1
xJkyT

Jk (7)

or J = XJλ̂JX−1
J , where XJ and the diagonal matrix λ̂J are matrices formed from the

right eigenvectors and the eigenvalues of J, respectively, while X−1
J equals the matrix

formed from the left eigenvectors of J. Equation (7) implies, in turn, that the Krylov
matrix can be expressed as a product of three matrices:

K = Vω̂X−1
J

where V ≡ (λJj)
i−1 denotes the Vandermonde matrix of the eigenvalues of J, and ω̂

the diagonal matrix formed from the elements of ωT ≡ pT(0)XJ. Consequently, the
determinant of K is given by

det [K] = det [V] det
[
ω̂

]
det

[
X−1

J

]
(8)

where det[V] = ∏
1≤i<j≤n(λJj −λJi). Finally, the ‘degree of controllability’ is defined as

DC ≡ σKnσ
−1
K1 (9)
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where 0 ≤ DC < 1, and σK1, σKn denote the largest and the smallest singular values
of K, respectively, while DC−1 equals the ‘condition number’ of K. When DC = 0,
the economy is uncontrollable; otherwise, it is completely controllable. Nevertheless,
when the value of DC is ‘very small’, the controllability is ‘weak’ or ‘poor’; in other
words, the economy is said to be ‘almost uncontrollable.’8

II. I.c Theories of value

As is well known, in the Ricardo–Marx–Dmitriev–Samuelson ‘equal value compo-
sitions of capital’ case, lT (vT) is the left P–F eigenvector of A (of J). Therefore,
commodity prices are independent of income distribution, and equal to the labor
values, i.e. pT(ρ) = pT(0) = pT(1), or, in other words, the ‘labor theory of value’
appears to hold true. In that case, the economy is controllable of rank 1 irrespective of
the rank of J.

In the two-industry case, the functions pj(ρ) are necessarily monotonic and, there-
fore, the direction of relative price movement is governed only by the differences in
the relevant capital intensities (‘capital-intensity effect’; see Kurz and Salvadori, 1995,
Chap. 3; Pasinetti, 1977, pp. 82–84), as in the various versions of the traditional theory
of value, i.e. classical (Ricardo, 1951, p. 46), Marxian (Marx, [1894] 1959, Chaps.
11 and 12), Austrian (Böhm-Bawerk, [1889] 1959, Vol. 2, pp. 86 and 356–358; von
Weizsäcker, 1977), and neoclassical (see, e.g. Kemp, 1973; Stolper and Samuelson,
1941).

However, as Sraffa (1960) pointed out, leaving aside these two restrictive cases,
changes in income distribution can activate complex capital revaluation effects, which
imply that the direction of relative price movement is governed not only by the
differences in the relevant capital intensities but also by the movement of the relevant
capital intensities (‘price effect’) arising from changes in relative commodity prices:

[T]he means of production of an industry are themselves the product of one or
more industries which may in their turn employ a still lower proportion of labor
to means of production (and the same may be the case with these latter means
of production; and so on) (pp. 14–15). [ . . . ] [A]s the wages fall the price of the
product of a low-proportion [ . . . ] industry may rise or it may fall, or it may even
alternate in rising and falling, relative to its means of production (p. 15). [ . . . ]
The reversals in the direction of the movement of relative prices, in the face of
unchanged methods of production, cannot be reconciled with any notion of capital
as measurable quantity independent of distribution and prices. (p. 38; Sraffa, 1960)

8 The largest ratio between two consecutive singular values of K provides a measure of the distance
of a controllable pair [J, pT(0)] to the nearest uncontrollable pair or, in other words, the order of
perturbation needed to transform a controllable system into an uncontrollable one (Boley and Lu, 1986;
for a comprehensive review of alternative approaches, see Datta, 2004, pp. 183–191).
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Indeed, differentiation of equation (4) with respect to ρ finally gives (for a detailed
analysis, see Mariolis and Tsoulfidis, 2016a, pp. 40–45)

ṗj ≡ dpj/dρ = Rvj

[(
κj − R−1

)
+ ρκ̇j

]

where the difference κj − R−1 denotes the traditional or capital-intensity effect,
κj ≡ (pTHej)v

−1
j the capital-intensity of the vertically integrated industry producing

commodity j, R−1 the capital-intensity of the Sraffian Standard system, which is
independent of prices and income distribution (since, in our case, Sraffa’s Standard
commodity is the numéraire), and κ̇j = (ṗTHej)v

−1
j the Sraffian or price effect,

which depends on the entire economic system and, therefore, is not predictable at
the level of any single industry. Hence, when these two effects have opposite signs, i.e.
κj−R−1 > (<) 0 and κ̇j < (>) 0, the traditional statement about the direction of relative
price movements does not necessarily hold true, while the underlying phenomena call
for a new approach to the theory of value and, therefore, form the basis of the Sraffian
theory of value. In effect, all statements and relationships derived from the traditional
theory of value framework cannot, in general, be extended beyond a world where:
(i) there are no produced means of production; or (ii) there are produced means of
production, while the profit rate on the value of those means of production is zero; or,
finally, (iii) that profit rate is positive, while the economy produces one and only one,
single or composite, commodity (Garegnani, 1970, 1984; Salvadori and Steedman,
1985). Consequently, it can be stated that the failures of the traditional theory of
value arise from the existence of complex inter-industry linkages in the realistic case
of production of commodities and positive profits by means of commodities. In a note
written on 16 January 1946, Piero Sraffa remarked that

if the “Labour Theory of Value” applied exactly throughout, then, and only then,
would the “marginal product of capital” theory work! (Sraffa Papers D3/12/16: 34;
cited in Kurz, 1998, p. 447)

II. I.d A spectral reconstruction of the theory of value

Leaving aside the aforementioned two unrealistic or restrictive cases (i.e. vTJ = vT,
and n = 2), equations (4) through (7) imply that, from a theory of value viewpoint, it
suffices to focus on the following seven ideal-type (in the Weberian sense) cases:9

Case 1: The economy tends to be decomposed into n quasi-similar self-reproducing
vertically integrated industries, i.e. J ≈ I (consider Hartfiel and Meyer, 1998). It

9 The first five cases have been extensively analyzed in the literature: Mariolis (2013, 2015); Mariolis
and Tsoulfidis (2009, 2016a, pp. 154–157; 2018). Thus, here we report, without detailed proofs, the main
findings that are directly relevant for our present purposes. To the best of my knowledge, the other two cases
have not been addressed in the literature. Examples illustrating these two cases will appear in the forthcoming
book by Mariolis et al. (2021, Chap. 2, Appendix).
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follows that λJk ≈ 1 and pT ≈ pT(0). Hence, the economy tends to behave as a
one-industry economy, and the labor theory of value tends to hold true. When J = I,
the economy is controllable of rank 1, irrespective of the direction of the labor value
vector, pT(0).

Case 2: There are strong quasi-linear dependencies amongst the technical con-
ditions of production in all the vertically integrated industries, i.e. |λJk| ≈ 0 or

J ≈ (yT
J1xJ1)

−1xJ1yT
J1. It follows that

pT ≈ (1 − ρ) pT(0) + ρpT(1)

namely, pT tends to be a convex combination of the extreme, economically significant,
values of the price vector, pT(0) and pT(1), and, therefore, linear.10 When |λJk| = 0, we

obtain a ‘rank-one economy,’ i.e. rank[J] = 1 or J = (yT
J1xJ1)

−1xJ1yT
J1, which exhibits

the following two essential characteristics: (i) Irrespective of the direction of pT(0), it
holds that

pT(0)Jh =
[
(1 − λA1) yT

J1xJ1

]−1
yT

J1 = pT(1), h = 1, 2 . . .

since

Jh =
(
yT

J1xJ1

)−h(
yT

J1xJ1

)h−1
xJ1yT

J1 = J

Hence, rank[K] = 2 and, therefore, the economy is uncontrollable, i.e. controllable
of rank 2. (ii) It is equivalent, via Schur’s triangularization (see, e.g. Meyer, 2001, pp.
508–509), to an economically significant and generalized (1 × n − 1) Marx–Fel’dman–
Mahalanobis (or, in more traditional terms, ‘corn–tractor’) economy (Mariolis, 2013;
pp. 5195–5196, 2015, p. 270). Hence, it behaves as a reducible two-industry economy
without ‘self-reproducing non-basics’ (in the sense of Sraffa, 1960, Appendix B).
Consequently, on the one hand, the price side of a rank-one economy is ‘a little’ more
complex than that of the labor theory of value economy (J = I) and, at the same time,
much simpler than that of a completely controllable economy. In fact, its price side
corresponds to that of the traditional theory of value. On the other hand, a rank-one
economy can be fully described by a triangular matrix with only n positive technical
coefficients and, therefore, its production structure is ‘a little’ more complex than that
of Austrian-type economies, where the technical coefficients matrix is, by assumption,
strictly triangular (see Burmeister, 1974).

Case 3: Consider the following rank-one perturbation of the labor theory of value
economy (see Case 1): J ≈ (1 + ψTχ)

−1
[I + χψT] (≥ 0). It follows that λJk ≈

10 It may be noted that, if the elements of J are identically and independently distributed, then Bródy’s
(1997) conjecture implies that |λJ2| tends to zero, with speed n−0.5, when n tends to infinity (see Mariolis
and Tsoulfidis, 2016a, Chap. 6, and the references therein).
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(1 + ψTχ)
−1

(consider, e.g. Ding and Zhou, 2007, p. 1224) and

pT ≈ (
1 − ρλJk

)−1
[
(1 − ρ) pT(0) + ρ

(
1 − λJk

)
pT(1)

]

namely, pj(ρ) tend to be rational functions of degree 1 and, therefore, monotonic.
Hence, for −∞ << ψTχ << 0 or 0 << ψTχ << +∞, the economy tends to behave
as a two-industry economy with only basic commodities, and the traditional theory of
value tends to hold true. As ψTχ → 0 (as ψTχ → ±∞), we obtain Case 1 (Case 2).

Case 4: Consider the following rank-two perturbation of the labor theory of value

economy, i.e. J ≈ (1 + λ�1)−1[I +
2∑

κ=1
χκψT

κ ], where χκ , ψT
κ , are semi-positive vectors

(or two pairs of complex conjugate vectors), and � ≡ [ψ1, ψ2]T[χ1, χ2] (in either case,
� is a 2 × 2 matrix with only real eigenvalues). It follows that n − 2 non-dominant
eigenvalues of J tend to equal (1 + λ�1)−1, and the remaining tends to equal (1 +
λ�2)(1 + λ�1)−1 (consider Ding and Zhou, 2008, p. 635). Hence, the economy tends
to behave as a three-industry economy; and the same holds true when λJk ≈ αk ± iβk,
where i ≡ √−1 and 0 << |βk|, for all k.11

Case 5: The sub-dominant eigenvalues are complex, λJ2,3 ≈ α2,3 ± iβ2,3, where
0 << |β2,3|, and λJ4 ≈ · · · ≈ λJn ≈ 0. Hence, the economy tends to behave as a
reducible four-industry economy without self-reproducing non-basics. Both in Cases
4 and 5, the price functions may be non-monotonic.

Case 6: Matrix J is doubly stochastic, i.e. eTJ = eT and Je = e. From equation (6)
it follows that

pT(1) = [(1 − λA1) n]−1
(
lTe

)
eT

or, since vTe = (1 − λA1)−1(lTe) and pT(0) = vT,

pT(1) = p(0)eT (10)

where p(0) ≡ n−1(pT(0)e) equals the arithmetic mean of the elements of the labor
value vector. Hence, if there is a commodity whose labor value equals the arithmetic
mean of the labor values, then, by Rolle’s theorem, its price curve will necessarily have
at least one stationary point in the economically relevant interval of the profit rate.

Case 7: Since A = [I + H]−1H, there is no good economic reason for supposing
that J is doubly stochastic. It should be noted, however, that: (i) Any doubly stochastic
matrix can be expressed as a convex combination of at most (n − 1)2 + 1 permutation
matrices (see, e.g. Minc, 1988, pp. 117–122). (ii) Matrix J is similar to the column

11 Any complex number is an eigenvalue of a positive 3×3 circulant matrix (Minc, 1988, p. 167). For the
properties of the circulant matrices, see Davis (1979).
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stochastic matrix M ≡ ŷJ1Jŷ−1
J1 :

eTM = yT
J1Jŷ−1

J1 = yT
J1ŷ−1

J1 = eT

The elements of M are independent of both the choice of physical measurement units
and the normalization of yT

J1. Matrix M can be conceived of as a matrix of the relative
shares of the capital goods in the cost of outputs, evaluated at ρ = 1, or, alternatively,
as derived from J by changing the units in which the various commodity quantities
are measured.12 Moreover, the Dmitriev and Dynkin (1946) and Karpelevich (1951)
inequalities for stochastic matrices imply that

αk + |βk| tan
(
πn−1

)
≤ 1 (11)

for each eigenvalue λMk (= λJk) = αk ± iβk (also see Swift, 1972). (iii) Finally, when
there is only one commodity input in each industry (i.e. industry κ, κ = 1, 2, . . . , n−1,
produces the input for industry κ + 1, and industry n produces the input for industry
1), A is imprimitive or ‘cyclic’ (also see Schefold, 2008, pp. 8–14; Solow, 1952, pp.
35–36 and 40–41). Therefore, M is circulant and doubly stochastic (see Mariolis and
Tsoulfidis, 2016a, pp. 165–167).

Thus, hereafter, we consider a ‘basic circulant’ perturbation of the labor theory of
value economy, i.e.

J ≈ C ≡ cI + (1 − c) �

where 0 ≤ c < 1, � ≡ circ[0, 1, 0, . . . , 0] is the basic circulant permutation (or shift)
matrix (post-multiplying any matrix by � shifts its columns one place to the right), and
�n = I. The eigenvalues of the circulant doubly stochastic matrix C are c + (1 − c)θκ ,
where κ = 0, 1, . . . , n − 1, θ ≡ exp(2π in−1), and

θκ = cos
(
2πκn−1

)
+ i sin

(
2πκn−1

)

are the n distinct roots of unity. It then follows that: (i) The eigenvalues of C are
the vertices of a regular n–gon, and C is that stochastic matrix that has an ‘extremal
eigenvalue’ on the segment joining the points 1 and θ (Dmitriev and Dynkin, 1946;
Karplevich, 1951).13 This eigenvalue is a sub-dominant eigenvalue, which satisfies
relation (11) as an equality. (ii) For 0 < c < 1, the moduli of the eigenvalues of C

12 When rank[J] = 1, all the columns of M are equal to each other (Mariolis and Tsoulfidis, 2009, p. 10;
Iliadi et al., 2014, p. 40).

13 A number λ is called extremal eigenvalue if (i) it belongs to the set of eigenvalues of a stochastic matrix;
and (ii) αλ does not belong to this set, whenever α > 1.
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are given by √
c2 + 2c (1 − c) cos

(
2πκn−1

) + (1 − c)2

or, equivalently, √
1 + 2c (1 − c)

[
cos

(
2πκn−1

) − 1
]

which is a symmetric function with respect to c = 0.5 and κ ′, κ ′′, where κ ′ + κ ′′ = n
(Davis, 1979, pp. 119–120). The modulus of the sub-dominant eigenvalues occurs for
κ = 1, n − 1. When n is even, i.e. n = 2μ, the smallest modulus occurs for κ = μ,
and equals |1 − 2c|, while when n is odd, n = 2μ + 1, the smallest modulus occurs for
κ = μ, μ + 1. Finally, C has rank n − 1 iff n is even and c = 0.5 (Davis, 1979, p. 147).
For instance, Figure 1 displays the location of the eigenvalues of C in the complex
plane, for n = 3, 6 and c = 0, 0.25, 0.75.

Now, we turn to the price side of the economies [C, pT(0)], 0 ≤ c < 1. Ignoring the
approximation error, equation (4) reduces to

pT = (1 − γ ) pT(0) + γ pT� (12)

where γ ≡ (1 − c)ρ(1 − ρc)−1, 0 ≤ γ ≤ 1. Hence, since �n = I, equation (5) reduces
to

pT = (1 − γ )
(
1 − γ n)−1pT(0)

[
I + γ� + γ 2�2 + · · · + γ n−1�n−1

]

or, since (1 − γ )(1 − γ n)−1 = (1 + γ + γ 2 + · · · + γ n−1)
−1

,

pT =
(
1 + γ + γ 2 + · · · + γ n−1

)−1
pT(0)

[
I + γ� + γ 2�2 + · · · + γ n−1�n−1

]
(13)

From equations (12) and (13) it follows that:
(i) Although matrix C is irreducible, commodity prices reduce to a finite series of

dated quantities of vertically integrated labor. Hence, it can be stated that these ‘basic
circulant economies’ bear some characteristic similarities with the ‘old wine–oak chest’
economy example constructed by Sraffa (1960, pp. 37–38). That example

is a crucial test for the [traditional] ideas of a quantity of capital and of [an average]
period of production. [ . . . ] One can only wonder what is the good of a quantity of
capital or a period of production which, since it depends on the rate of interest [the
rate of profits], cannot be used for its traditional purpose, which is to determine
the rate of interest [the rate of profits]. (Sraffa, 1962, pp. 478–479)



COMPETING THEORIES OF VALUE: A SPECTRAL ANALYSIS 13

FIGURE 1. The location of the eigenvalues of C in the complex plane; n = 3, 6 and c = 0, 0.25,
0.75.

(ii) In fact, because of the structure of the economies’ matrices, commodity prices are
governed by the terms

δκ ≡
(
1 + γ + γ 2 + · · · + γ n−1

)−1
γ κ , κ = 0, 1, . . . , n − 1
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FIGURE 2. The rational function terms that govern the commodity prices in basic circulant
economies; n = 7, −0.5 ≤ γ ≤ 1.2.

where the denominator has either no real roots (when n is odd) or one real root (i.e.
−1, when n is even). The first derivative of δκ with respect to γ is

δ̇κ = (
1 − γ n)−2

γ κ−1 (εκ + ζκ)

where εκ ≡ κ − (1 + κ)γ defines a linear function, and ζκ ≡ [(n − κ)− (n − κ − 1)γ ]γ n

defines a polynomial function. Hence, we get δ̇0(0) = −1, δ̇1(0) = 1 and δ̇κ (0) = 0,
for κ ≥ 2, while δ̇κ (1) = (2n)−1(1 + 2κ − n). Moreover, when κ ≥ 2 is even (is odd),
δκ has a minimum (an inflection point) at γ = 0. Finally, iff 1 ≤ κ < 2−1(n − 1) and
n ≥ 4, then the equation εκ + ζκ = 0 has two roots in the interval [0, 1], i.e. γ = γ ∗

κ

(unique), where 0 < γ ∗
κ < 1, at which δκ is maximized, and γ = 1 (repeated), where

ε̇κ (1) + ζ̇κ (1) = 0 (in all other cases, it has, in the said interval, the roots 0 and/or 1).
For instance, Figure 2 displays the terms δκ as functions of γ , for n = 7: γ ∗

1
∼= 0.517,

γ ∗
2

∼= 0.768, and δ3 has a maximum at γ = 1. The values γ ∗
κ tend to the values of the

sequence (1 + κ)−1κ as n tends to infinity and, therefore, the maximum values of δκ

tend to the values of the sequence (1 + κ)−(1+κ)κκ .
(iii) Commodity prices tend to pT(0)�n−1 as γ tends to plus or minus infinity. Iff

there exists a non-zero value of γ , say γ ∗∗, such that pj(γ
∗∗) = pj(0), then

pj
(
γ ∗∗) = pT (

γ ∗∗)�ej = pj−1
(
γ ∗∗)

where j = 1, 2, . . . , n and p0(γ ∗∗) ≡ pn(γ
∗∗).
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(iv) Differentiation of equation (12) with respect to ρ gives

ṗT = −γ̇
(
pT(0) − pT�

)
+ γ ṗT� (14)

ṗTe = 0 (15)

where γ̇ ≡ (1 − c)(1 − ρc)−2 > 0, the difference pT� − pT(0) represents the capital-
intensity effect, while the term ṗT� represents the price effect. Now, it suffices to
focus on the extreme, economically significant, values of ρ: (a). At ρ = 0 equation
(14) reduces to

ṗT(0) = −(1 − c)−1pT(0)D (16)

where D ≡ I −� is a circulant double-centered matrix, since all its columns and rows
sum to zero, i.e. eTD = 0T, De = 0, and rank[D] = n−1. (b). At ρ = 1 equation (14)
reduces to

ṗT(1) = −(1 − c)−1
(
pT(0) − pT(1)�

)
+ ṗT(1)�

or, rearranging terms and invoking equations (10) and eT� = eT,

ṗT(1)D = −(1 − c)−1pT(0)F (17)

where F ≡ I − n−1(eeT) is the centering matrix, which is symmetric and idempotent
(multiplication of any vector by the centering matrix has the effect of subtracting its
arithmetic mean from every element). The solution to equations (15) and (17) is given
by

ṗT(1) = −(1 − c)−1pT(0)FD+

or

ṗT(1) = −(1 − c)−1pT(0)D+ (18)

where D+ denotes the Moore–Penrose inverse of D, which is, in our case, a circulant
double-centered matrix satisfying DD+ = D+D = F.14 Moreover, when n is even,
n = 2μ, the explicit expression for matrix D+ can be written as

D+ = (4μ)−1circ [2μ − 1, 2μ − 3, 2μ − 5, . . . , − (2μ − 3) , − (2μ − 1)] (19)

14 There is an algebraic analog of equations (15) and (17) in electrical network theory: ṗT(1) and
−(1 − c)−1pT(0)F correspond to the vectors of voltages and currents, respectively; equations (15) and (17)
correspond to Kirchhoff’s voltage law and Ohm’s law, respectively; D and D+ correspond to the matrices of
admittance and impedance, respectively (see Sharpe and Styan, 1965).
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while when n is odd, n = 2μ + 1, it can be written as

D+ = (2μ + 1)−1circ [μ, μ − 1, μ − 2, . . . , − (μ − 1) , −μ] (20)

(consider Davis, 1979, pp. 148–149). The elements of the first row of −D+ are equal
to δ̇κ (1) = (2n)−1(1 + 2κ − n), κ = 0, 1, . . . , n − 1. Hence, it is easy to check that
equations (16), (18), (19), and (20) imply that, when n ≥ 3 and pj(0) < pj+1(0),
j = 1, 2, . . . , n−1, there is at least one element of ṗT, say ṗh, such that ṗh(0)ṗh(1) < 0,
irrespective of the direction of pT(0). Then, by Bolzano’s theorem, it follows that ph
necessarily has at least one extreme point in the interval (0, 1).

Finally, it should be noted that n × n doubly stochastic circulant economies of the
form

c1I + c2� + c2�2 + · · · + cn�
n−1, (c2, c3, . . . , cn−1) > 0

do not necessarily generate non-monotonic price curves.

II. I.e The complex plane location of the polar theories of value

These seven ideal-type cases (and their possible combinations) indicate that the
location of the non-dominant eigenvalues in the complex plane could be considered
as an index for the underlying inter-industry linkages. More specifically, the analysis
showed that, ignoring the approximation error, the hitherto alternative theories of
value can be algebraically represented as ‘perturbations’ of the labor theory of value,
i.e. of Case 1. Cases 2 and 3 correspond to the traditional theory of value, while Cases
4, 5, and 6 fall into the Sraffian theory of value. Finally, it could be said that Case 7, i.e.
the basic circulant perturbation of the labor theory of value economy, corresponds to
the ‘Sraffian polar theory of value,’ since in that case the price–profit rate relationship
is non-monotonic whatever the labor value vector is. Hence, Figure 3 displays the
location of the polar theories of value in the complex plane.

III. THE DEGREE AND NUMERICAL RANK OF PRICE
CONTROLLABILITY OF ACTUAL ECONOMIES

The Sraffian price–wage–profit rate system of quite diverse actual economies (but, ex
hypothesis, linear and single-product) or, to be more precise, of their Symmetric Input–
Output Tables (SIOT) simulacra, has been examined in a relatively large number of
studies. The key stylized findings were that, in the economically relevant interval of
the profit rate:15 (i) Non-monotonic price–profit rate curves do exist. Nevertheless,
they are not significantly more than 20% of the tested cases, while, expressed in terms
of Sraffa’s Standard commodity, they have no more than one extreme point. Cases
of reversal in the direction of deviation between prices and labor values (‘price–labor

15 See Mariolis and Tsoulfidis (2016a, Chaps. 3, 5, and 6, 2016b, 2018); Mariolis et al. (2019) and the
references therein.
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FIGURE 3. The complex plane location of the polar theories of value: labor theory (LT),
traditional theory (TT), and Sraffian polar theory (SPT).

value reversals’) also occur, but are rarer. (ii) Wage–profit rate curves with alternating
curvature do exist. Nevertheless, despite the presence of considerable deviations
from the ‘equal value compositions of capital’ case, the wage–profit rate curves are
near-linear, in the sense that the correlation coefficients between the distributive
variables tend to be above 99%, and their second derivatives change sign no more
than once or, very rarely, twice, irrespective of the numéraire chosen. (iii) Therefore,
the approximation of the empirical price–wage–profit rate curves through low-order
formulae (ranging from linear to quadratic) works well. (iv) Since actual economies
are characterized by complex inter-industry linkages, alternative production methods,
and the production of many commodities and positive profits by means of many
commodities, the aforementioned shapes of the price–wage–profit rate curves seem to
be paradoxical. However, they can be explained by the fact that, across countries and
over time, both the moduli of the first non-dominant eigenvalues and the first non-
dominant singular values of matrices J fall quite rapidly, whereas the rest constellate
in much lower values, forming ‘long tails’. Hence, although rank[J] = n holds true, the
‘effective rank (or dimensions)’ of J is much lower than n.

The aforementioned stylized findings in combination with the theoretical analysis
developed in this paper suggest that the actual single-product economies tend to behave
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as three-industry uncontrollable systems. To look deeper into this interesting and
important phenomenon, we will deal with data from ten flow Symmetric Input–Output
Tables (SIOTs) of five European economies, i.e. Denmark (for the years 2000 and
2004; n = 56), Finland (for the years 1995 and 2004; n = 57), France (for the years
1995, n = 58, and 2005, n = 57), Germany (for the years 2000 and 2002; n = 57) and
Sweden (for the years 1995, n = 53, and 2005, n = 51). These SIOTs have been firstly
used by Iliadi et al. (2014), and their findings (for instance, non-monotonic price
curves, expressed in terms of Sraffa’s Standard commodity, are observed in about
105/559 or 19% of the tested cases) are absolutely consistent with those of all other
studies of actual price–wage–profit rate systems. Hence, this data sample could be
considered as sufficiently representative. Table 1 reports: (i) |λJ2|, |λJ3|, |λJn| and the
geometric mean, GM, of the moduli of the non-dominant eigenvalues of J (reproduced
from Iliadi et al., 2014, p. 43), which can be written, in our case, as

GM = |det [J]|(n−1)−1 =
( n∏

i=1

σJi

)(n−1)−1

As is well known, the geometric mean is rather appropriate for detecting the central
tendency of an exponential set of numbers. (ii) The ratio between the smallest and the
largest singular values, σJnσ

−1
J1 , of J. (iii) The absolute values of the determinant of the

Krylov–controllability matrices and of the determinant of the Vandermonde matrices
of the eigenvalues of J (see equation (8)). (iv) The numbers of non-monotonic price–
profit rate curves and of price–labor value reversals, denoted by ‘N-M’ and ‘Rev.’,
respectively. It then follows that, in total, there are 63/559 or 11% cases of price–labor
value reversals. (v) The degree of price controllability, DC (see equation (9)). (vi) The
‘relative or normalized numerical rank of price controllability’, NNRC, defined as

NNRC (τ ) ≡ 100n−1NR (K, τ)

where NR(K, τ) denotes the numerical rank of K, i.e. the number of singular values
of K that are larger than τσK1, and τ denotes the chosen level of tolerance. Finally,
Figure 4 (reproduced from Iliadi et al., 2014, p. 45) displays the location of the
eigenvalues of all matrices J in the complex plane, while Figure 5 (the horizontal axis
is plotted in logarithmic scale) displays the normalized singular values, σKjσ

−1
K1 , of all

matrices K.
From these representative results, it is deduced that: (i) Non-monotonic price–

profit rate curves appear when the price and the capital-intensity effects work in
opposite directions, and the former dominate the latter. Moreover, the price–labor
value reversals (a) imply that the identification of a vertically integrated industry
as ‘labor (or capital)-intensive’ makes sense only with respect to a given profit rate,
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FIGURE 4. The complex plane location of the eigenvalues of all normalized vertically
integrated technical coefficients matrices: five European economies, 10 symmetric input–output
tables.

while, as Eatwell (2019) emphasizes, there is no neoclassical theory of the profit
rate; and (b) are analogous to the re-switching of techniques phenomenon16 and,
therefore, indicate that there is no reason to consider that the empirical probability
of this phenomenon is negligible. Since actual economies exhibit non-monotonic
price–profit rate curves and price–labor value reversals, they cannot be coherently
analyzed in terms of the traditional theory of value. (ii) It need hardly be said that
the existence of fairly good, low-order approximations to the empirical price–profit
rate curves is insufficient to restore the traditional theory of value. Therefore, only
the Sraffian theory of value provides a sound empirical basis, although the eigenvalue
distributions of the actual matrices J sharply differ from those of the basic circulant
economies, which correspond to the Sraffian polar theory of value (compare Figure 1
with Figure 4). In fact, the actual eigenvalue distributions can be viewed as mixed

16 ‘Merge’ the two numerical examples provided by Pasinetti (1966, pp. 504–508) and Sraffa (1960, pp.
37–38), and take into account Sraffa’s (1960, pp. 81–82) relevant remark.
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FIGURE 5. The normalized singular values of all price controllability matrices: five European
economies, 10 symmetric input–output tables.

combinations of the ideal-type Cases 4 and 5 (presented in Section II.d). (iii) The
actual single-product economies are characterized by rather low degrees and relatively
low normalized numerical ranks of price controllability. This primarily results from the
skew characteristic value distributions of the actual matrices J, and indicates that the
said economies constitute almost uncontrollable systems (see Table 1 and Figure 5).17

In this connection, experiments with Krylov matrices formed from pseudo-random18

vectors pT(0) and the abovementioned actual matrices J lead to similar results, i.e. to
degrees of controllability of the order of 10−19.

It should, finally, be added that, regarding actual Krylov matrices, we also exper-
imented with the input–output data used by Soklis (2011), i.e. 10 Supply and Use
Tables (SUTs) of the Finnish economy (for the years 1995 through 2004; n = 57),
and the results were similar. As is well known, in the SUTs there are industries that
produce more than one commodity, and commodities that are produced by more than
one industry; therefore, the SUTs are the empirical counterpart of joint production
economies à la von Neumann–Sraffa. For instance, when the Krylov matrix is formed
from the vector lT[B − A]−1 and the matrix A[B − A]−1, where B denotes the output
coefficients matrix, the degree of controllability is in the range of 6 × 10−93 to 10−27,
while, when the Krylov matrix is formed from lTB−1 and AB−1, the degree of

17 Mariolis and Veltsistas (2020) provide new, extensive empirical evidence (from 43 countries and 172
SIOTs, spanning the time period 2000–2014) that further supports this statement.

18 Generated by Mathematica; see https://reference.wolfram.com/language/tutorial/PseudorandomNum
bers.html

https://reference.wolfram.com/language/tutorial/PseudorandomNumbers.html
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controllability is in the range of 2 × 10−28 to 2 × 10−20. In those SUTs (i) there
exists an interval of r(> 0), such that the vector of ‘labor-commanded’ prices, w−1pT,
is positive, for the years 1995 through 1998 and 2000 through 2002; and (ii) the
monotonicity of the estimated wage–profit rate curves (for the years 1995, 1997, 2000,
and 2001) depends on the numeraire chosen (Soklis, 2011, pp. 553–555). However,
the existence of non-monotonic wage–profit rate curves contradicts the internal logic
of the traditional theory of value and, at the same time, seriously undermines the
construction of ‘approximate surrogate production functions’ from ‘near-linear’ wage–
profit rate curves.

IV. CONCLUDING REMARKS

It has been shown that the hitherto competing theories of value (i) correspond
to specific production structures and, therefore, to specific spectral characteristics
of the price controllability matrix; and (ii) can be represented algebraically and,
furthermore, understood conceptually as ‘perturbations’ of the so-called labor theory
of value, which is a polar theory that holds true when, and only when, the rank of
the price controllability matrix equals one. Thus, this paper pointed out a spectral
reconstruction of the theory of value, which forms a typical, mathematical model for
the most general theory of value to date, namely, the Sraffian theory, determined the
location of the hitherto competing theories of value in the complex plane, and might
provide a representation of the evolution of these theories in terms of both the logic
and the history of economic thought.

It has also been shown that, although the existence of price–profit rate curves that
are non-monotonic irrespective of the labor vector direction presupposes eigenvalue
distributions sharply different from those appearing in actual economies, the Sraffian
theory is not only the most general to date, but also empirically relevant. Since actual
economies exhibit non-monotonic price–wage–profit rate curves, wage–profit rate
curves with alternating curvature, and price–labor value reversals, which are analogous
to the re-switching of techniques phenomenon, they can only be treated through the
Sraffian theory.

At the same time, empirical evidence suggests that the actual economies are char-
acterized by rather low degrees and relatively low normalized numerical ranks of price
controllability. This finding results from the skew characteristic value distributions of
the actual vertically integrated technical coefficients matrices, and indicates that the
actual economies tend to respond as uncontrollable systems, with only a relatively
few effectively controllable modes. Finally, this property of almost uncontrollability
explains, in turn, the specific shape features of the empirical price–wage–profit rate
curves that are (re-)positioned, by the traditional theory of value, at the heart of the
capital theory debate.

Future research work should (i) expand the empirical analysis of the joint production
economies using data from the Supply and Use Tables; (ii) delve into the proximate
determinants of the uncontrollable aspects of real-world economies, and draw their
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broader implications for both political economy and economic policy issues; and (iii)
heuristically look for eigenvalue locations in the complex plane that could lead to new
versions of the theory of value.
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